Decidability of Conjugacy of Tree-Shifts of Finite Type

  • Nathalie Aubrun
  • Marie-Pierre Béal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case.

In this paper, we study the shifts of finite type defined by infinite trees. Indeed, infinite trees have a natural structure of one-sided shifts, between the shifts of dimension one and two. We prove a decomposition theorem for these tree-shifts, i.e. we show that a conjugacy between two tree-shifts of finite type can be broken down into a finite sequence of elementary transformations called in-splittings and in-amalgamations. We prove that the conjugacy problem is decidable for tree-shifts of finite type. This result makes the class of tree-shifts closer to the class of one-sided shifts of dimension one than to the class of two-sided ones. Our proof uses the notion of bottom-up tree automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007), http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)
  2. 2.
    Coven, E., Johnson, A., Jonoska, N., Madden, K.: The symbolic dynamics of multidimensional tiling systems. Ergodic Theory and Dynamical Systems 23(02), 447–460 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hedlund, G.: Endomorphisms and automorphisms of the shift dynamical system. Theory of Computing Systems 3(4), 320–375 (1969)MathSciNetMATHGoogle Scholar
  4. 4.
    Johnson, A., Madden, K.: The decomposition theorem for two-dimensional shifts of finite type. In: Proceedings-American Mathematical Society, vol. 127, pp. 1533–1544 (1999)Google Scholar
  5. 5.
    Kitchens, B.P.: Symbolic dynamics. Universitext, One-sided, two-sided and countable state Markov shifts. Springer, Berlin (1998)Google Scholar
  6. 6.
    Krieger, W.: On sofic systems. I. Israel J. Math. 48(4), 305–330 (1984)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Krieger, W.: On sofic systems. II. Israel J. Math. 60(2), 167–176 (1987)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  9. 9.
    Nasu, M.: Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological markov shifts. In: Proceedings of Maryland special year in Dynamics 1986–1987. Lecture Notes in Mathematics, vol. 1342, pp. 564–607. Springer, Heidelberg (1988)Google Scholar
  10. 10.
    Nasu, M.: Textile Systems for Endomorphisms and Automorphisms of the Shift. American Mathematical Society (1995)Google Scholar
  11. 11.
    Nivat, M., Podelski, A. (eds.): Tree automata and languages. Studies in Computer Science and Artificial Intelligence, vol. 10. North-Holland Publishing Co., Amsterdam (1992); Papers from the workshop held in Le Touquet (June 1990)Google Scholar
  12. 12.
    Perrin, D., Pin, J.: Infinite words. Elsevier, Boston (2004)MATHGoogle Scholar
  13. 13.
    Thomas, W.: Automata on infinite objects. In: Handbook of theoretical computer science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)Google Scholar
  14. 14.
    Williams, R.F.: Classification of subshifts of finite type. In: Recent advances in topological dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund). Lecture Notes in Math., vol. 318, pp. 281–285. Springer, Berlin (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nathalie Aubrun
    • 1
  • Marie-Pierre Béal
    • 1
  1. 1.Laboratoire d’informatique Gaspard-MongeUniversité Paris-Est, CNRSFrance

Personalised recommendations