De-amortized Cuckoo Hashing: Provable Worst-Case Performance and Experimental Results

  • Yuriy Arbitman
  • Moni Naor
  • Gil Segev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)


Cuckoo hashing is a highly practical dynamic dictionary: it provides amortized constant insertion time, worst case constant deletion time and lookup time, and good memory utilization. However, with a noticeable probability during the insertion of n elements some insertion requires Ω(logn) time. Whereas such an amortized guarantee may be suitable for some applications, in other applications (such as high-performance routing) this is highly undesirable.

Kirsch and Mitzenmacher (Allerton ’07) proposed a de-amortization of cuckoo hashing using queueing techniques that preserve its attractive properties. They demonstrated a significant improvement to the worst case performance of cuckoo hashing via experimental results, but left open the problem of constructing a scheme with provable properties.

In this work we present a de-amortization of cuckoo hashing that provably guarantees constant worst case operations. Specifically, for any sequence of polynomially many operations, with overwhelming probability over the randomness of the initialization phase, each operation is performed in constant time. In addition, we present a general approach for proving that the performance guarantees are preserved when using hash functions with limited independence instead of truly random hash functions. Our approach relies on a recent result of Braverman (CCC ’09) showing that poly-logarithmic independence fools AC0 circuits, and may find additional applications in various similar settings. Our theoretical analysis and experimental results indicate that the scheme is highly efficient, and provides a practical alternative to the only other known approach for constructing dynamic dictionaries with such worst case guarantees, due to Dietzfelbinger and Meyer auf der Heide (ICALP ’90).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braverman, M.: Poly-logarithmic independence fools AC0 circuits. In: 24th CCC 2009 (to appear)Google Scholar
  2. 2.
    Dalal, K., Devroye, L., Malalla, E., McLeis, E.: Two-way chaining with reassignment. SIAM J. Comput. 35(2), 327–340 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Demaine, E.D., Meyer auf der Heide, F., Pagh, R., Pǎtraşcu, M.: De dictionariis dynamicis pauco spatio utentibus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 349–361. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., Meyer auf der Heide, F., Rohnert, H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput. 23(4), 738–761 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dietzfelbinger, M., Meyer auf der Heide, F.: A new universal class of hash functions and dynamic hashing in real time: In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 6–19. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly packed constant size bins. Theor. Comput. Sci. 380(1-2), 47–68 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions. In: 35th STOC, pp. 629–638 (2003)Google Scholar
  8. 8.
    Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with worst case constant access time. Theory Comput. Syst. 38(2), 229–248 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize cuckoo hashing in hardware. In: 45th Allerton, pp. 751–758 (2007)Google Scholar
  10. 10.
    Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing with a stash. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 611–622. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Lipton, R.J., Naughton, J.F.: Clocked adversaries for hashing. Algorithmica 9(3), 239–252 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Miltersen, P.B.: Cell probe complexity - a survey. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Naor, M., Segev, G., Wieder, U.: History-independent cuckoo hashing. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 631–642. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Ostlin, A., Pagh, R.: Uniform hashing in constant time and linear space. In: 35th STOC, pp. 622–628 (2003)Google Scholar
  16. 16.
    Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: 16th SODA, pp. 830–839 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuriy Arbitman
  • Moni Naor
    • 1
  • Gil Segev
    • 1
  1. 1.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations