What Motion Patterns Tell Us about Soccer Teams

  • Jörn Sprado
  • Björn Gottfried
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5399)


A qualitative representation of motion patterns is presented that forms an interface between low-level concepts of behaviours and high-level concepts of reasoning. How the patterns can be employed for characterising interaction patterns in soccer is demonstrated using the simulation league; also, specific soccer scenes from real games prove their adequacy. The advantages of our approach are: it supports the limited abilities of robots in the different RoboCup leagues, i. e. it relies on coarse positional distinctions that are reliably obtainable and easily translated into action; the analysis is directly derived from raw data without the need for any preprocessing steps; both situations can be dealt with, egocentric viewpoints of individuals and the bird’s eye view; the approach is independent on the domain, i. e. generalises to arbitrary spatiotemporal interaction patterns.


Motion Pattern Granularity Level Soccer Team Temporal Granularity Spatial Granularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    André, E., Binsted, K., Tanaka-Ishii, K., Luke, S., Herzog, G., Rist, T.: Three robocup simulation league commentator systems. AI Magazine 22(1), 57–66 (2000)Google Scholar
  2. 2.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bode, G.: WM Analyse. Fussball training 24, 39–47 (2006)Google Scholar
  4. 4.
    Fédération Internationale de Football Association (FIFA). Laws of the game 2007/2008 (2007)Google Scholar
  5. 5.
    Gottfried, B.: Representing short-term observations of moving objects by a simple visual language. Journal of Visual Languages and Computing (2007)Google Scholar
  6. 6.
    Gottfried, B., Witte, J. (Sprado). Representing spatial activities by spatially contextualised motion patterns. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 330–337. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Hirano, S., Tsumoto, S.: Finding interesting pass patterns from soccer game records. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS, vol. 3202, pp. 209–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Kautz, H., Allen, J.: Generalized plan recognition. In: AAAI 1986, pp. 32–37. AAAI Press, Menlo Park (1986)Google Scholar
  9. 9.
    Kiefer, P., Schlieder, C.: Exploring context-sensitivity in spatial intention recognition. In: Gottfried, B. (ed.) 1st Workshop on Behaviour Monitoring and Interpretation (BMI 2007), vol. 296, pp. 102–116. CEURS Proceedings (2007)Google Scholar
  10. 10.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19(6), 639–668 (2005)CrossRefGoogle Scholar
  11. 11.
    Miene, A., Visser, U., Herzog, O.: Recognition and prediction of motion situations based on a qualitative motion description. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 77–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., Schill, K.: From motion observation to qualitative motion representation. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS, vol. 1849, pp. 115–126. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Riedmiller, M., Gabel, T.: Brainstormers 2D - team description 2007. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS (LNAI), vol. 5001. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Visser, U., Weland, H.: Using online learning to analyze the opponent’s behavior. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 78–93. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Zimmermann, K., Freksa, C.: Qualitative Spatial Reasoning Using Orientation, Distance, and Path Knowledge. Applied Intelligence 6, 49–58 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jörn Sprado
    • 1
  • Björn Gottfried
    • 1
  1. 1.Centre for Computing TechnologiesUniversity of BremenGermany

Personalised recommendations