Face Recognition for Human-Robot Interaction Applications: A Comparative Study

  • Mauricio Correa
  • Javier Ruiz-del-Solar
  • Fernando Bernuy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5399)


The aim of this work is to carry out a comparative study of face-recognition methods for Human-Robot Interaction (HRI) applications. The analyzed methods are selected by considering their suitability for HRI use, and their performance in former comparative studies. The methods are compared using standard databases and a new database for HRI applications. The comparative study includes aspects such as variable illumination, facial expression variations, face occlusions, and variable eye detection accuracy, which directly influence face alignment precision. The results of this comparative study are intended to be a guide for developers of face recognition systems for HRI, and they have direct application in the RoboCup@Home league.


Face Recognition Human-Robot Interaction RoboCup @Home 


  1. 1.
    Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face Recognition by Humans: 19 Results All Computer Vision Researchers Should Know About. Proc. of the IEEE 94(11), 1948–1962 (2006)CrossRefGoogle Scholar
  2. 2.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Surveys, 399–458 (2003)Google Scholar
  3. 3.
    Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39, 1725–1745 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and Machine Recognition of Faces: A Survey. Proceedings of the IEEE 83(5), 705–740 (1995)CrossRefGoogle Scholar
  5. 5.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neurosicence 3(1), 71–86 (1991)CrossRefGoogle Scholar
  6. 6.
    Face Recognition Homepage (January 2008),
  7. 7.
    Ruiz-del-Solar, J., Navarrete, P.: Eigenspace-based face recognition: a comparative study of different approaches. IEEE Transactions on Systems, Man and Cybernetics, Part C 35(3), 315–325 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Zou, J., Ji, Q., Nagy, G.: A Comparative Study of Local Matching Approach for Face Recognition. IEEE Transactions on Image Processing 16(10), 2617–2628 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: Proc. of the IEEE Conf. Computer Vision and Pattern Recognition – CVPR 2005, vol. 1, pp. 947–954 (2005)Google Scholar
  10. 10.
    Fröba, B., Ernst, A.: Face detection with the modified census transform. In: 6th Int. Conf. on Face and Gesture Recognition - FG 2004, Seoul, Korea, pp. 91–96 (2004)Google Scholar
  11. 11.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Ruiz-del-Solar, J., Loncomilla, P., Devia, C.: A New Approach for Fingerprint Verification based on Wide Baseline Matching using Local Interest Points and Descriptors. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 586–599. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Mian, A.S., Bennamoun, M., Owens, R.: An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition. IEEE Trans. on Patt. Analysis and Machine Intell. 29(11), 1927–1943 (2007)CrossRefGoogle Scholar
  14. 14.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)CrossRefGoogle Scholar
  15. 15.
    Verschae, R., Ruiz-del-Solar, J., Correa, M.: A Unified Learning Framework for object Detection and Classification using Nested Cascades of Boosted Classifiers. Machine Vision and Applications (in press)Google Scholar
  16. 16.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  17. 17.
    RoboCup @Home Official Website,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mauricio Correa
    • 1
  • Javier Ruiz-del-Solar
    • 1
  • Fernando Bernuy
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ChileChile

Personalised recommendations