Advertisement

Planetary Exploration in USARsim: A Case Study Including Real World Data from Mars

  • Andreas Birk
  • Jann Poppinga
  • Todor Stoyanov
  • Yashodhan Nevatia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5399)

Abstract

Intelligent Mobile Robots are increasingly used in unstructured domains; one particularly challenging example for this is planetary exploration. The preparation of according missions is highly non-trivial, especially as it is difficult to carry out realistic experiments without very sophisticated infrastructures. In this paper, we argue that the Unified System for Automation and Robot Simulation (USARSim) offers interesting opportunities for research on planetary exploration by mobile robots. With the example of work on terrain classification, it is shown how synthetic as well as real world data from Mars can be used to test an algorithm’s performance in USARSim. Concretely, experiments with an algorithm for the detection of negotiable ground on a planetary surface are presented. It is shown that the approach performs fast and robust on planetary surfaces.

Keywords

Mobile Robot Stereo Camera Planetary Surface Planetary Exploration Mars Exploration Rover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Erickson, J.: Living the dream - an overview of the mars exploration project. IEEE Robotics and Automation Magazine 13(2), 12–18 (2006)CrossRefGoogle Scholar
  2. 2.
    Biesiadecki, J., Baumgartner, E., Bonitz, R., Cooper, B., Hartman, F.R., Leger, P.C., Maimone, M.W., Maxwell, S.A., Trebi-Ollennu, A., Tunstel, E.W., Wright, J.R.: Mars exploration rover surface operations: driving opportunity at meridiani planum. IEEE Robotics and Automation Magazine 13(2), 63–71 (2006)CrossRefGoogle Scholar
  3. 3.
    Lindemann, R., Bickler, D., Harrington, B., Ortiz, G.M., Voothees, C.J.: Mars exploration rover mobility development. IEEE Robotics and Automation Magazine 13(2), 19–26 (2006)CrossRefGoogle Scholar
  4. 4.
    Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Hsu, J.C.-J., Jonsson, A., Kanefsky, B., Morris, P., Rajan, K.R.A.K., Yglesias, J., Chafin, B.G., Dias, W.C., Maldague, P.F.: Mapgen: mixed-initiative planning and scheduling for the mars exploration rover mission. IEEE Intelligent Systems 19(1), 8–12 (2004)CrossRefGoogle Scholar
  5. 5.
    Backes, P.G., Norris, J.S., Powell, M.W., Vona, M.A., Steinke, R., Wick, J.: The science activity planner for the mars exploration rover mission: Fido field test results. In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA (2003)Google Scholar
  6. 6.
    USARsim: Urban search and rescue simulator (2006), http://usarsim.sourceforge.net/
  7. 7.
    games, E.: Unreal engine (2003)Google Scholar
  8. 8.
    Karma: Mathengine karma user guide (2003)Google Scholar
  9. 9.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the gap between simulation and reality in urban search and rescue. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Carpin, S., Lewis, M., Wang, J., Balarkirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. Proc. of the 2007 IEEE Intl. Conf. on Robotics and Automation (ICRA) (2007)Google Scholar
  11. 11.
    Carpin, S., Stoyanov, T., Nevatia, Y., Lewis, M., Wang, J.: Quantitative assessments of usarsim accuracy. In: Proceedings of PerMIS (2006)Google Scholar
  12. 12.
    Carpin, S., Birk, A., Lewis, M., Jacoff, A.: High fidelity tools for rescue robotics: results and perspectives. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 301–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Birk, A., Pathak, K., Schwertfeger, S., Chonnaparamutt, W.: The IUB Rugbot: an intelligent, rugged mobile robot for search and rescue operations. In: IEEE International Workshop on Safety, Security, and Rescue Robotics (SSRR). IEEE Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Chonnaparamutt, W., Birk, A.: A new mechatronic component for adjusting the footprint of tracked rescue robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 450–457. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Birk, A., Carpin, S.: Rescue robotics - a crucial milestone on the road to autonomous systems. Advanced Robotics Journal 20(5), 595–695 (2006)CrossRefGoogle Scholar
  16. 16.
    Birk, A., Markov, S., Delchev, I., Pathak, K.: Autonomous rescue operations on the IUB Rugbot. In: IEEE International Workshop on Safety, Security, and Rescue Robotics (SSRR). IEEE Press, Los Alamitos (2006)Google Scholar
  17. 17.
    Birk, A., Kenn, H.: A control architecture for a rescue robot ensuring safe semi-autonomous operation. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 254–262. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Iagnemma, K., Brooks, C., Dubowsky, S.: Visual, tactile, and vibration-based terrain analysis for planetary rovers. In: IEEE Aerospace Conference, vol. 2, pp. 841–848 (2004)Google Scholar
  19. 19.
    Iagnemma, K., Shibly, H., Dubowsky, S.: On-line terrain parameter estimation for planetary rovers. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 3142–3147 (2002)Google Scholar
  20. 20.
    Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., Chatila, R.: Autonomous rover navigation on unknown terrains: Functions and integration. International Journal of Robotics Research 21(10-11), 917–942 (2002)CrossRefGoogle Scholar
  21. 21.
    Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., Chatila, R.: Autonomous rover navigation on unknown terrains functions and integration. In: Experimental Robotics Vii. Lecture Notes in Control and Information Sciences, vol. 271, pp. 501–510 (2001)Google Scholar
  22. 22.
    Gennery, D.B.: Traversability analysis and path planning for a planetary rover. Autonomous Robots 6(2), 131–146 (1999)CrossRefGoogle Scholar
  23. 23.
    Poppinga, J., Birk, A., Pathak, K.: Hough based terrain classification for realtime detection of drivable ground. Journal of Field Robotics 25(1-2), 67–88 (2008)CrossRefGoogle Scholar
  24. 24.
    MER-Science-Team: Mars exploration rover (MER) mission data archives (2007), http://anserver1.eprsl.wustl.edu/anteam/merb/merb_main2.htm

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Birk
    • 1
  • Jann Poppinga
    • 1
  • Todor Stoyanov
    • 1
  • Yashodhan Nevatia
    • 1
  1. 1.Jacobs University BremenBremenGermany

Personalised recommendations