Landmark-Based Representations for Navigating Holonomic Soccer Robots

  • Daniel Beck
  • Alexander Ferrein
  • Gerhard Lakemeyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5399)


For navigating mobile robots the central problems of path planning and collision avoidance have to be solved. In this paper we propose a method to solve the (local) path planning problem in a reactive fashion given a landmark-based representation of the environment. The perceived obstacles define a point set for a Delaunay tessellation based on which a traversal graph containing possible paths to the target position is constructed. By applying A* we find a short and safe path through the obstacles. Although the traversal graph is recomputed in every iteration in order to achieve a high degree of reactivity the method guarantees stable paths in a static environment; oscillating behavior known from other local methods is precluded. This method has been successfully implemented on our Middle-size robots.


Mobile Robot Target Position Path Planning Optimal Path Voronoi Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Canny, J.: Computing roadmaps of general semi-algebraic sets. The Computer Journal 36(5), 504–514 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buhmann, J.M., Burgard, W., Cremers, A.B., Fox, D., Hofmann, T., Schneider, F.E., Strikos, J., Thrun, S.: The mobile robot rhino. AI Mag. 16(2), 31–38 (1995)Google Scholar
  3. 3.
    Simmons, R.: The curvature-velocity method for local obstacle avoidance. In: Proc. ICRA 1996. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  4. 4.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal on Robotics Research 5(1), 90–98 (1986)CrossRefGoogle Scholar
  5. 5.
    Borenstein, J., Koren, Y.: The vector field histogram - fast obstacle avoidance for mobile robots. IEEE Trans. on Robotics and Automation 3(7), 278–288 (1991)CrossRefGoogle Scholar
  6. 6.
    LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  8. 8.
    Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proc. ICRA 1991, pp. 1398–1404 (1991)Google Scholar
  9. 9.
    Park, M.G., Jeon, J.H., Lee, M.C.: Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. In: Proc. ISIE 2001, vol. 3, pp. 1530–1535 (2001)Google Scholar
  10. 10.
    Zhang, P.Y., Lü, T.S., Song, L.B.: Soccer robot path planning based on the artificial potential field approach with simulated annealing. Robotica 22(5), 563–566 (2004)CrossRefGoogle Scholar
  11. 11.
    Zhu, Q., Yan, Y., Xing, Z.: Robot path planning based on artificial potential field approach with simulated annealing. In: Proc. ISDA 2006, pp. 622–627 (2006)Google Scholar
  12. 12.
    Gutman, J., Fukuchi, M., Fujita, M.: Real-time path planning for humanoid robot navigation. In: Proc. IJCAI 2005, pp. 1232–1238 (2005)Google Scholar
  13. 13.
    Behnke, S.: Local multiresolution path planning. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020, pp. 332–343. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An algorithm for robot path planning with cellular automata. In: Proc. ACRI 2000, pp. 11–19. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Sahraei, A., Manzuri, M.T., Razvan, M.R., Tajfard, M., Khoshbakht, S.: Real-Time Trajectory Generation for Mobile Robots. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 459–470. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry. Elsevier Science Publishers, Amsterdam (2000)Google Scholar
  17. 17.
    Foley, J.D., Phillips, R.L., Hughes, J.F., van Dam, A., Feiner, S.K.: Introduction to Computer Graphics. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Beck
    • 1
  • Alexander Ferrein
    • 1
  • Gerhard Lakemeyer
    • 1
  1. 1.Knowledge-based Systems Group Computer Science DepartmentRWTH AachenAachenGermany

Personalised recommendations