Bayesian Belief Network for Tsunami Warning Decision Support

  • Lilian Blaser
  • Matthias Ohrnberger
  • Carsten Riggelsen
  • Frank Scherbaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5590)


Early warning systems help to mitigate the impact of disastrous natural catastrophes on society by providing short notice of an imminent threat to geographical regions. For early tsunami warning, real-time observations from a seismic monitoring network can be used to estimate the severity of a potential tsunami wave at a specific site. The ability of deriving accurate estimates of tsunami impact is limited due to the complexity of the phenomena and the uncertainties in seismic source parameter estimates. Here we describe the use of a Bayesian belief network (BBN), capable of handling uncertain and even missing data, to support emergency managers in extreme time critical situations. The BBN comes about via model selection from an artifically generated database. The data is generated by ancestral sampling of a generative model defined to convey formal expert knowledge and physical/mathematical laws known to hold in the realm of tsunami generation. Hence, the database implicitly holds the information for learning a BBN capturing the required domain knowledge.


Bayesian belief network learning tsunami warning system decision support seismic source parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayraktarli, Y.Y., Yazgan, U., Dazio, A., Faber, M.H.: Capabilities of the Bayesian probabilistic networks approach for earthquake risk management. In: Proceedings 1st European Conf. Earthqu. Eng. & Seism., Geneva, Switzerland (2006)Google Scholar
  2. 2.
    Hincks, T.: Probabilistic Volcanic Hazard and Risk Assessment. Phd thesis, University of Bristol (2006)Google Scholar
  3. 3.
    Gret-Regamey, A., Straub, D.: Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. NHESS 6, 911–926 (2006)Google Scholar
  4. 4.
    Straub, D.: Natural hazards risk assessment using Bayesian networks. In: Safety and Reliability of Engineering Systems and Structures, Proc. ICOSSAR 2005, Rome (2005)Google Scholar
  5. 5.
    Stassopoulou, A., Petrou, M., Kittler, J.: Application of a Bayesian network in a GIS based decision making system. IJGIS 12, 23–45 (1998)Google Scholar
  6. 6.
    Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., Shut, N.: Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. PAGEOPH 164, 577–592 (2007)CrossRefGoogle Scholar
  7. 7.
    Thio, H.K., Somerville, P., Ichinose, G.: Probabilistic analysis of strong ground motion and tsunami hazards in Southeast Asia. JET 1, 119–137 (2007)Google Scholar
  8. 8.
    Geist, E.L., Parsons, T.: Probabilistic analysis of tsunami hazards. Natural Hazards 37, 277–314 (2006)CrossRefGoogle Scholar
  9. 9.
    Power, W., Downes, G., Stirling, M.: Estimation of tsunami hazard in New Zealand due to South American earthquakes. PAGEOPH 164, 547–564 (2007)CrossRefGoogle Scholar
  10. 10.
    Maretzki, S., Grilli, S.T., Baxter, D.P.: Probabilistic SMF Tsunami Hazard Assessment for the upper East Coast of the United States. In: Proc. 3rd Intl. Symp. on Submarine Mass Movements and their Consequences, pp. 377–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Kanamori, H.: Energy-Release In Great Earthquakes. JGR 82, 2981–2987 (1977)CrossRefGoogle Scholar
  12. 12.
    Aki, K., Richards, P.G.: Quantitative seismology, 2nd edn. University Science Books (2002)Google Scholar
  13. 13.
    Wells, D.L., Coppersmith, K.J.: New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. BSSA 84, 974–1002 (1994)Google Scholar
  14. 14.
    Geller, R.J.: Scaling relations for earthquake source parameters and magnitudes. BSSA 66(5), 1501–1523 (1976)Google Scholar
  15. 15.
    Mai, P.M., Beroza, G.C.: Source scaling properties from finite-fault-rupture models. BSSA 90, 604–615 (2000)Google Scholar
  16. 16.
    Nuttli, O.W.: Empirical Magnitude And Spectral Scaling Relations For Mid-Plate and Plate-Margin Earthquakes. Tectonophysics 93, 207–223 (1983)CrossRefGoogle Scholar
  17. 17.
    Scholz, C.H.: Scaling Laws For Large Earthquakes - Consequences For Physical Models. BSSA 72, 1–14 (1982)Google Scholar
  18. 18.
    Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. BSSA 75, 1135–1154 (1985)Google Scholar
  19. 19.
    Wang, R.J., Martin, F.L., Roth, F.: Computation of deformation induced by earthquakes in a multi-layered elastic crust - FORTRAN programs EDGRN/EDCMP. Computers & Geosciences 29, 195–207 (2003)CrossRefGoogle Scholar
  20. 20.
    Tadepalli, S., Synolakis, C.E.: Model for the Leading Waves of Tsunamis. PRL 77, 2141–2144 (1996)CrossRefGoogle Scholar
  21. 21.
    Gudmundsson, O., Sambridge, M.: A regionalized upper mantle (RUM) seismic model. JGR 103, 7121–7136 (1998)CrossRefGoogle Scholar
  22. 22.
    Gutenberg, B., Richter, C.F.: Seismicity of the Earth and Associated Phenomena, pp. 17–19. Princeton Univ. Press, Princeton (1954)Google Scholar
  23. 23.
    National Geophysical Data Center (NGDC), 2-Minute Gridded Global Relief Data (ETOPO2),
  24. 24.
    Kennett, B.L.N., Engdahl, E.R.: Traveltimes for global earthquake location and phase identification. GJI 195, 429–465 (1991)Google Scholar
  25. 25.
    Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning 20, 197–243 (1995)zbMATHGoogle Scholar
  26. 26.
    Riggelsen, C.: Learning Bayesian Networks: A MAP Criterion for Joint Selection of Model Structure and Parameter. In: IEEE Int. Conf. on Data Mining (2008)Google Scholar
  27. 27.
    Castelo, R., Kocka, T.: On inclusion-driven learning of Bayesian networks. JMLR 4, 527–574 (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lilian Blaser
    • 1
  • Matthias Ohrnberger
    • 1
  • Carsten Riggelsen
    • 1
  • Frank Scherbaum
    • 1
  1. 1.Institute of GeosciencesUniversity of PotsdamGolm, PotsdamGermany

Personalised recommendations