Merging Qualitative Constraints Networks Using Propositional Logic

  • Jean-François Condotta
  • Souhila Kaci
  • Pierre Marquis
  • Nicolas Schwind
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5590)

Abstract

In this paper we address the problem of merging qualitative constraints networks (QCNs). We propose a rational merging procedure for QCNs. It is based on translations of QCNs into propositional formulas, and take advantage of propositional merging operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.-F.: An interval-based representation of temporal knowledge. In: IJCAI, pp. 221–226 (1981)Google Scholar
  2. 2.
    Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A practical approach to fusing prioritized knowledge bases. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS, vol. 1695, pp. 222–236. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Cholvy, L.: Reasoning about merging information. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 3, pp. 233–263 (1998)Google Scholar
  4. 4.
    Condotta, J.-F., D’Almeida, D.: Qualitative constraints representation for the time and space in SAT. In: ICTAI, pp. 74–77 (2007)Google Scholar
  5. 5.
    Condotta, J.-F., Kaci, S., Schwind, N.: A framework for merging qualitative constraints networks. In: FLAIRS (2008)Google Scholar
  6. 6.
    Drake, L., Frisch, A.M., Gent, I.P., Walsh, T.: Automatically reformulating SAT-encoded CSPs. In: CP (2002)Google Scholar
  7. 7.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54(1), 199–227 (1992)CrossRefGoogle Scholar
  8. 8.
    Gent, I.P.: Arc consistency in SAT. In: ECAI, pp. 121–125 (2002)Google Scholar
  9. 9.
    Gorogiannis, N., Hunter, A.: Implementing semantic merging operators using binary decision diagrams. International Journal of Approximate Reasoning 49(1), 234–251 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Hué, J., Papini, O., Würbel, E.: Removed sets fusion: Performing off the shelf. In: ECAI (July 2008)Google Scholar
  11. 11.
    Konieczny, S., Lang, J., Marquis, P.: Distance-based merging: A general framework and some complexity results. In: KR, pp. 97–108 (2002)Google Scholar
  12. 12.
    Konieczny, S., Pérez, R.P.: On the logic of merging. In: KR, pp. 488–498 (1998)Google Scholar
  13. 13.
    Konieczny, S., Pérez, R.P.: Merging with integrity constraints. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS, vol. 1638, pp. 233–244. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Konieczny, S., Pérez, R.P.: Merging information under constraints: a logical framework. Journal of Logic and Computation 12(5), 773–808 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Ligozat, G.: On generalized interval calculi. In: AAAI, Anaheim, CA, pp. 234–240 (1991)Google Scholar
  16. 16.
    Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 9(1), 23–44 (1998)CrossRefGoogle Scholar
  17. 17.
    Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83, 363–378 (1996)CrossRefGoogle Scholar
  18. 18.
    Mitra, D.: Modeling and reasoning with star calculus. In: Annals of Mathematics and Artificial Intelligence (2004)Google Scholar
  19. 19.
    Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: A maximal tractable subclass of allen’s interval algebra. In: AAAI, Seattle, WA, pp. 356–361 (1994)Google Scholar
  20. 20.
    Pham, D.N., Thornton, J., Sattar, A.: Towards an efficient SAT encoding for temporal reasoning. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 421–436. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Randell, D.-A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: KR, pp. 165–176 (1992)Google Scholar
  22. 22.
    Revesz, P.Z.: On the semantics of theory change: Arbitration between old and new information. In: PODS, Washington, DC, pp. 71–82 (1993)Google Scholar
  23. 23.
    Revesz, P.Z.: On the semantics of arbitration. Journal of Algebra and Computation 7(2), 133–160 (1997)CrossRefMATHGoogle Scholar
  24. 24.
    Vilain, M., Kautz, H., Van Beek, P.: Constraint propagation algorithms for temporal reasoning: A revised report. In: Readings in Qualitative Reasoning about Physical Systems, pp. 373–381. Kaufmann, San Mateo (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean-François Condotta
    • 1
  • Souhila Kaci
    • 1
  • Pierre Marquis
    • 1
  • Nicolas Schwind
    • 1
  1. 1.Université d’Artois CRIL CNRS UMR 8188LensFrance

Personalised recommendations