A Stimulus-Centric Algebraic Approach to Sensors and Observations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5659)


The understanding of complex environmental phenomena, such as deforestation and epidemics, requires observations at multiple scales. This scale dependency is not handled well by today’s rather technical sensor definitions. Geosensor networks are normally defined as distributed ad-hoc wireless networks of computing platforms serving to monitor phenomena in geographic space. Such definitions also do not admit animals as sensors. Consequently, they exclude human sensors, which are the key to volunteered geographic information, and they fail to support connections between phenomena observed at multiple scales. We propose definitions of sensors as information sources at multiple aggregation levels, relating physical stimuli to observations. An algebraic formalization shows their behavior as well as their aggregations and generalizations. It is intended as a basis for defining consistent application programming interfaces to sense the environment at multiple scales of observations and with different types of sensors.


Application Programming Interface Dengue Fever Single Sensor Open Geospatial Consortium Wireless Multimedia Sensor Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shepherd, D., Kumar, S.: Microsensor Applications. In: Distributed Sensor Networks. Chapman & Hall, Boca Raton (2005)Google Scholar
  2. 2.
    Iyengar, S., Brooks, R. (eds.): Distributed Sensor Networks, 1st edn., December 2005. Chapman & Hall / Crc Computer and Information Science (2005)Google Scholar
  3. 3.
    Markham, A., Wilkinson, A.: A Biomimetic Ranking System for Energy Constrained Mobile Wireless Sensor Networks. In: Southern African Telecommunications, Networks and Applications Conference (SATNAC), Mauritius, September 9-13 (2007)Google Scholar
  4. 4.
    Reis, I.A., Camara, G., Assuncao, R., Monteiro, A.: Suppressing Temporal Data in Sensor Networks using a Scheme Robust to Aberrant Readings. International Journal of Distributed Sensor Networks (to be published, 2009)Google Scholar
  5. 5.
    Hart, J., Martinez, K.: Environmental Sensor Networks: A revolution in the earth system science? Earth-Science Reviews 78, 177–191 (2006)CrossRefGoogle Scholar
  6. 6.
    Nittel, S., Stefanidis, A.: GeoSensor Networks and Virtual GeoReality. In: GeoSensors Networks. CRC, Boca Raton (2005)Google Scholar
  7. 7.
    Botts, M.: OpenGIS Sensor Model Language (SensorML) Implementation Specification (2007)Google Scholar
  8. 8.
    Cox, S.: Observations and Measurements - Part 1 - Observation schema (2007)Google Scholar
  9. 9.
    Goodchild, M.: Citizens as Sensors: the World of Volunteered Geography. GeoJournal 69(4), 211–221 (2007)CrossRefGoogle Scholar
  10. 10.
    Akyildiz, I., Tommaso, M., Kaushik, C.: A Survey on Wireless Multimedia Sensor Networks. Computer Networks 51(4), 921–960 (2007)CrossRefGoogle Scholar
  11. 11.
    Sastry, S., Iyengar, S.: A Taxonomy of Distributed Sensor Networks. In: Distributed Sensor Networks, pp. 29–43. Routledge (2004)Google Scholar
  12. 12.
    Sgroi, M., Wolisz, A., Sangiovanni-Vincentelli, A., Rabaey, J.: A Service-Based Universal Application Interface for Ad Hoc Wireless Sensor and Actuator Networks. In: Weber, W., Rabaey, J., Aarts, E. (eds.) Ambient intelligence. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Akkaya, K., Younis, M.: A Survey on Routing Protocols for Wireless Sensor Networks. Ad Hoc Networks 3(3), 325–349 (2005)CrossRefGoogle Scholar
  14. 14.
    Lin, S., Kalogeraki, V., Gunopulos, D., Lonardi, S.: Efficient Information Compression in Sensor Networks. International Journal of Sensor Networks 1(3/4), 229–240 (2006)CrossRefGoogle Scholar
  15. 15.
    Kulik, L., Tanin, E., Umer, M.: Efficient Data Collection and Selective Queries in Sensor Networks. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GSN 2006. LNCS, vol. 4540, pp. 25–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Worboys, M., Duckham, M.: Monitoring Qualitative Spatiotemporal Change for Geosensor Networks. International Journal of Geographical Information Science 20, 1087–1108 (2006)CrossRefGoogle Scholar
  17. 17.
    Reichenbach, F., Born, A., Nash, E., Strehlow, C., Timmermann, D., Bill, R.: Improving Localization in Geosensor Networks through Use of Sensor Measurement Data. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 261–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Jung, Y., Nittel, S.: Geosensor Data Abstraction for Environmental Monitoring Application. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 168–180. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC Sensor Web Enablement: Overview And High Level Architecture. Technical report, Open Geospatial Consortium (2007)Google Scholar
  20. 20.
    Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Computing, 78–83 (2008)Google Scholar
  21. 21.
    Jirka, S., Bröring, A., Stasch, C.: Discovery Mechanisms for the Sensor Web. Sensors 9 (in press, 2009)Google Scholar
  22. 22.
    Hornsby, K., King, K.: Linking geosensor network data and ontologies to support transportation modeling. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GSN 2006. LNCS, vol. 4540, pp. 191–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Probst, F.: Ontological Analysis of Observations and Measurements. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 304–320. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Zhang, P., Sadler, C., Lyon, S., Martonosi, M.: Hardware Design Experiences in ZebraNet. In: 2nd international conference on Embedded networked sensor systems, pp. 227–238. ACM, New York (2004)CrossRefGoogle Scholar
  25. 25.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb deliverable D18 ontology library. Technical report, IST Project 2001-33052 WonderWeb: Ontology Infrastructure for the Semantic Web (2003)Google Scholar
  26. 26.
    Hansman, J.: Characteristics of Instrumentation. In: Measurement, Instrumentation, And Sensors Handbook. CRC Press LLC, Boca Raton (1999)Google Scholar
  27. 27.
    Regis, L., Monteiro, A., Melo-Santos, M., Silveira, J., Furtado, A., Acioli, R., Santos, G., Nakazawa, M., Carvalho, M., Ribeiro, P., Souza, W.: Developing New Approaches for Detecting and Preventing Aedes Aegypti Population Outbreaks: Basis for Surveillance, Alert and Control System. Memorias do Instituto Oswaldo Cruz 103, 50–59 (2008)CrossRefGoogle Scholar
  28. 28.
    Jirka, S., Bröring, A., Stasch, C.: Applying OGC Sensor Web Enablement to Risk Monitoring and Disaster Management. In: GSDI 11 World Conference, Rotterdam, Netherlands (June 2009)Google Scholar
  29. 29.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Resusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)zbMATHGoogle Scholar
  30. 30.
    Kuhn, W.: Semantic Reference Systems. International Journal of Geographic Information Science 17(5), 405–409 (2003)CrossRefGoogle Scholar
  31. 31.
    Scheider, S., Janowicz, K., Kuhn, W.: Grounding geographic categories in the meaningful environment,, 2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for Geoinformatics, University of MuensterGermany
  2. 2.Departamento de Estatística, UFMG and National Institute for Space Research (INPE)Brazil

Personalised recommendations