Optimal Identification of Delay-Diffusive Operators and Application to the Acoustic Impedance of Absorbent Materials

  • Céline Casenave
  • Gérard Montseny
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 388)


We present an original method devoted to the optimal identification of a wide class of complex linear operators involving some delay components, based on suitable infinite dimensional state formulations of diffusive type. Thanks to the intrinsic properties of these state formulations, cheap and precise numerical approximations are straightforwardly obtained, leading to approximate quadratic problems of reasonable dimension. We then propose this method for identification of the acoustic impedance of absorbent materials designed for noise reduction of aircraft motors.


Acoustic Impedance Convolution Operator Diffusive Representation Lead Acid Battery ARMA Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Israel, A., Greville, T.N.E.: Generalized inverses: theory and applications. Springer, New York (2003)zbMATHGoogle Scholar
  2. 2.
    Bidan, P., Lebey, T., Montseny, G., Neacsu, C., Saint-Michel, J.: Transient voltage distribution in motor windings fed by inverter: experimental study and modeling. IEEE Trans. on Power Electronics 16(1), 92–100 (2001)CrossRefGoogle Scholar
  3. 3.
    Casenave, C., Montseny, E.: Dissipative state formulations and numerical simulation of a porous medium for boundary absorbing control of aeroacoustic waves. In: Proc. 17th IFAC World Congress, Seoul, Korea, July 6-11 (2008)Google Scholar
  4. 4.
    Garcia, G., Bernussou, J.: Identification of the dynamics of a lead acid battery. In: ESAIM: Proceedings, p. 5 (1998)Google Scholar
  5. 5.
    Gasser, S.: Etude des propriétés acoustiques et mécaniques d’un matériau métallique poreux à base de sphères creuses de nickel. PhD Thesis, Grenoble, France (2003)Google Scholar
  6. 6.
    Lavrentiev, M., Chabat, B.: Méthodes de la théorie des fonctions d’une variable complexe, MIR edn., Moscow, Russia (1977)Google Scholar
  7. 7.
    Mazet, P.A., Ventribout, Y.: Control of Aero-acoustic Propagations with Wall Impedance Boundary Conditions: Application to a Porous Material Model. In: WAVES 2005, Providence, USA (2005)Google Scholar
  8. 8.
    Monin, A., Salut, G.: ARMA Lattice identification: a new hereditary algorithm. IEEE Transactions on Signal Processing 44(2), 360–370 (1996)CrossRefGoogle Scholar
  9. 9.
    Montseny, G.: Représentation diffusive. Hermes-Science, Paris, France (2003)Google Scholar
  10. 10.
    Montseny, G.: Diffusive representation for operators involving delays. In: Loiseau, J.J., Chiasson, J. (eds.) Applications of time-delay systems, pp. 217–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Taylor, M.E.: Partial differential equations - II. Applied Mathematical Sciences, p. 116. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Céline Casenave
    • 1
  • Gérard Montseny
    • 1
  1. 1.LAAS-CNRSUniversity of ToulouseToulouse cedex 4France

Personalised recommendations