Observer Design for Systems with Non Small and Unknown Time-Varying Delay

  • Alexandre Seuret
  • Thierry Floquet
  • Jean-Pierre Richard
  • Sarah Spurgeon
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 388)


This paper deals with the design of observers for linear systems with unknown, time-varying, but bounded delays (on the state and on the input). In this work, the problem is solved for a class of systems by combining the unknown input observer approach with an adequate choice of a Lyapunov-Krasovskii functional for non small delay systems. This result provides workable conditions in terms of rank assumptions and LMI conditions. The dynamic properties of the observer are also analyzed. A 4th-order example is used to demonstrate the feasibility of the proposed solution.


Linear Matrix Inequality Slide Mode Control Delay System Observer Gain Slide Mode Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbot, J.P., Boukhobza, T., Djemaï, M.: Sliding mode observer for triangular input form. In: Proc. 35th IEEE Conference on Decision and Control, Kobe, Japan (1996)Google Scholar
  2. 2.
    Choi, H.H., Chung, M.J.: Robust observer-based H  ∞  controller design for linear uncertain time-delay systems. Automatica 33, 1749–1752 (1997)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Darouach, M.: Linear functional observers for systems with delays in the state variables. IEEE Trans. on Automatic Control 46, 491–497 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Darouach, M., Pierrot, P., Richard, J.P.: Design of reduced-order observers without internal delays. IEEE Trans. on Automatic Control 44, 1711–1713 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    de Souza, C.E., Palhares, R.E., Peres, P.L.D.: Robust H  ∞  filtering for uncertain linear systems with multiple time-varying state: An LMI approach. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix, USA, pp. 2023–2028 (1999)Google Scholar
  6. 6.
    Edwards, C., Spurgeon, S.K.: Sliding mode control: Theory and applications. Taylor & Francis, Abington (1998)Google Scholar
  7. 7.
    Fairman, F.W., Kumar, A.: Delayless observers for systems with delay. IEEE Trans. on Automatic Control 31, 258–259 (1986)zbMATHCrossRefGoogle Scholar
  8. 8.
    Floquet, T., Barbot, J.P., Perruquetti, W., Djemaï, M.: On the robust fault detection via a sliding mode disturbance observer. International Journal of Control 77, 622–629 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Floquet, T., Edwards, C., Spurgeon, S.K.: On sliding mode observers for systems with unknown inputs. In: Proc. International Workshop on Variable Structure Systems, Sardinia, Italy (2006)Google Scholar
  10. 10.
    Fridman, E., Gouaisbaut, F., Dambrine, M., Richard, J.P.: Sliding mode control of systems with time-varying delays via a descriptor approach. Int. J. System Sc. 34, 553–559 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fridman, E., Shaked, U., Xie, L.: Robust H  ∞  filtering of linear systems with time-varying delay. IEEE Trans. on Automatic Control 48, 159–165 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hu, L.S., Huang, J., Cao, H.H.: Robust digital model predicitve control for linear uncertain systems with saturations. IEEE Trans. on Automatic Control 49, 792–796 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Niculescu, S.I., de Souza, C.E., Dugard, L., Dion, J.M.: Robust exponential stability of uncertain systems with time-varying delays. IEEE Trans. on Automatic Control 43, 743–748 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Perruquetti, W., Barbot, J.P. (eds.): Sliding mode control in engineering. Marcel Dekker, New York (2002)Google Scholar
  15. 15.
    Richard, J.P.: Time delay systems: An overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sename, O.: New trends in design of observers for time-delay systems. Kybernetica 37, 427–458 (2001)MathSciNetGoogle Scholar
  17. 17.
    Seuret, A., Dambrine, M., Richard, J.P.: Robust exponential stabilization for systems with time-varying delays. In: Proc. 5th IFAC Workshop on Time-Delay Systems, Leuven, Belgium (2004)Google Scholar
  18. 18.
    Seuret, A., Floquet, T., Richard, J.P., Spurgeon, S.K.: A sliding mode observer for linear systems with unknown time varying delay. In: Proc. American Control Conference, New York, USA (2007)Google Scholar
  19. 19.
    Wang, Z., Huang, B., Unbehausen, H.: Robust H  ∞  observer design for uncertain time-delay systems: I the continuous case. In: Proc. 14th IFAC World Congress, Beijing, China, pp. 231–236 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexandre Seuret
    • 1
  • Thierry Floquet
    • 1
    • 3
  • Jean-Pierre Richard
    • 1
    • 3
  • Sarah Spurgeon
    • 2
  1. 1.LAGIS UMR CNRS 8146, Ecole Centrale de LilleCité ScientifiqueFrance
  2. 2.Department of ElectronicsUniversity of KentUK
  3. 3.Équipe Projet ALIENCentre de Recherche INRIA Lille-Nord EuropeFrance

Personalised recommendations