Applications of Linear Co-positive Lyapunov Functions for Switched Linear Positive Systems

  • Florian Knorn
  • Oliver Mason
  • Robert Shorten
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 389)


In this paper we review necessary and sufficient conditions for the existence of a common linear co-positive Lyapunov function for switched linear positive systems. Both the state dependent and arbitrary switching cases are considered and a number of applications are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arcak, M., Sontag, E.D.: Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9), 1531–1537 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. In: Computer science and applied mathematics. Academic Press, New York (1979)Google Scholar
  3. 3.
    Farina, L., Rinaldi, S.: Positive Linear Systems. Wiley-Interscience Series. John Wiley & Sons, Inc., New York (2000)MATHGoogle Scholar
  4. 4.
    Foschini, G.J., Miljanic, Z.: A simple distributed autonomous power control algorithm and its convergence. IEEE Transactions on Vehicular Technology 42(4), 641–646 (1993)CrossRefGoogle Scholar
  5. 5.
    Gurvits, L., Shorten, R., Mason, O.: On the stability of switched positive linear systems. IEEE Transactions on Automatic Control 52(6), 1099–1103 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Haddad, W.M., Chellaboina, V.: Stability theory for nonnegative and compartmental dynamical systems with time delay. Systems & Control Letters 51(5), 355–361 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hale, J., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. In: Applied Mathematical Sciences, vol. 99. Springer, New York (1993)Google Scholar
  8. 8.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of convex analysis. Grundlehren Text Editions. Springer, Heidelberg (2001)MATHGoogle Scholar
  9. 9.
    Jacquez, J.A., Simon, C.P.: Qualitative theory of compartmental systems. SIAM Review 35(1), 43–79 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6), 988–1001 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Johnson, C.R.: Sufficient conditions for D-stability. Journal of Economic Theory 9(1), 53–62 (1974)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Johnson, C.R., Mehrmann, V., Olesky, D.D.: Sign controllability of a nonnegative matrix and a positive vector. SIAM Journal on Matrix Analysis and Applications 14(2), 398–407 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kharitonov, V.L.: Robust stability analysis of time delay systems: A survey. Annual Reviews in Control 23, 185–196 (1999)Google Scholar
  14. 14.
    Knorn, F., Mason, O., Shorten, R.: On linear co-positive Lyapunov functions for sets of linear positive systems. Automatica (2008) (to appear)Google Scholar
  15. 15.
    Mason, O., Shorten, R.: On linear copositive Lyapunov functions and the stability of switched positive linear systems. IEEE Transactions on Automatic Control 52(7), 1346–1349 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, New York (2008)MATHGoogle Scholar
  17. 17.
    Shorten, R., Wirth, F., Leith, D.J.: A positive systems model of tcp-like congestion control: asymptotic results. IEEE/ACM Transactions on Networking 14(3), 616–629 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for switched and hybrid systems. SIAM Review 49(4), 545–592 (2007)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Song, Y., Gowda, M.S., Ravindran, G.: On some properties of P-matrix sets. Linear Algebra and its Applications 290(1-3), 237–246 (1999)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Virnik, E.: Analysis of positive descriptor systems. Ph.D. thesis, Technische Universität Berlin, Germany (2008)Google Scholar
  21. 21.
    Šiljak, D.D.: Large-Scale Dynamic Systems: Stability and Structure. North-Holland Series in System Science and Engineering, vol. 3. North-Holland Publishing Co., New York (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Knorn
    • 1
  • Oliver Mason
    • 1
  • Robert Shorten
    • 1
  1. 1.Hamilton InstituteNational University of Ireland MaynoothMaynoothIreland

Personalised recommendations