Applications of Linear Co-positive Lyapunov Functions for Switched Linear Positive Systems

  • Florian Knorn
  • Oliver Mason
  • Robert Shorten
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 389)


In this paper we review necessary and sufficient conditions for the existence of a common linear co-positive Lyapunov function for switched linear positive systems. Both the state dependent and arbitrary switching cases are considered and a number of applications are presented.


Multiplicative Noise Positive System Positive Orthant Hurwitz Matrix Arbitrary Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arcak, M., Sontag, E.D.: Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9), 1531–1537 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. In: Computer science and applied mathematics. Academic Press, New York (1979)Google Scholar
  3. 3.
    Farina, L., Rinaldi, S.: Positive Linear Systems. Wiley-Interscience Series. John Wiley & Sons, Inc., New York (2000)zbMATHGoogle Scholar
  4. 4.
    Foschini, G.J., Miljanic, Z.: A simple distributed autonomous power control algorithm and its convergence. IEEE Transactions on Vehicular Technology 42(4), 641–646 (1993)CrossRefGoogle Scholar
  5. 5.
    Gurvits, L., Shorten, R., Mason, O.: On the stability of switched positive linear systems. IEEE Transactions on Automatic Control 52(6), 1099–1103 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Haddad, W.M., Chellaboina, V.: Stability theory for nonnegative and compartmental dynamical systems with time delay. Systems & Control Letters 51(5), 355–361 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hale, J., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. In: Applied Mathematical Sciences, vol. 99. Springer, New York (1993)Google Scholar
  8. 8.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of convex analysis. Grundlehren Text Editions. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  9. 9.
    Jacquez, J.A., Simon, C.P.: Qualitative theory of compartmental systems. SIAM Review 35(1), 43–79 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6), 988–1001 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Johnson, C.R.: Sufficient conditions for D-stability. Journal of Economic Theory 9(1), 53–62 (1974)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Johnson, C.R., Mehrmann, V., Olesky, D.D.: Sign controllability of a nonnegative matrix and a positive vector. SIAM Journal on Matrix Analysis and Applications 14(2), 398–407 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kharitonov, V.L.: Robust stability analysis of time delay systems: A survey. Annual Reviews in Control 23, 185–196 (1999)Google Scholar
  14. 14.
    Knorn, F., Mason, O., Shorten, R.: On linear co-positive Lyapunov functions for sets of linear positive systems. Automatica (2008) (to appear)Google Scholar
  15. 15.
    Mason, O., Shorten, R.: On linear copositive Lyapunov functions and the stability of switched positive linear systems. IEEE Transactions on Automatic Control 52(7), 1346–1349 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, New York (2008)zbMATHGoogle Scholar
  17. 17.
    Shorten, R., Wirth, F., Leith, D.J.: A positive systems model of tcp-like congestion control: asymptotic results. IEEE/ACM Transactions on Networking 14(3), 616–629 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for switched and hybrid systems. SIAM Review 49(4), 545–592 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Song, Y., Gowda, M.S., Ravindran, G.: On some properties of P-matrix sets. Linear Algebra and its Applications 290(1-3), 237–246 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Virnik, E.: Analysis of positive descriptor systems. Ph.D. thesis, Technische Universität Berlin, Germany (2008)Google Scholar
  21. 21.
    Šiljak, D.D.: Large-Scale Dynamic Systems: Stability and Structure. North-Holland Series in System Science and Engineering, vol. 3. North-Holland Publishing Co., New York (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Knorn
    • 1
  • Oliver Mason
    • 1
  • Robert Shorten
    • 1
  1. 1.Hamilton InstituteNational University of Ireland MaynoothMaynoothIreland

Personalised recommendations