Positive Systems pp 163-171

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 389) | Cite as

Analysis of Degenerate Chemical Reaction Networks

  • Markus Uhr
  • Hans-Michael Kaltenbach
  • Carsten Conradi
  • Jörg Stelling

Abstract

Positivity of states and parameters in dynamic models for chemical reaction networks are exploited by Chemical Reaction Network Theory (CRNT) to predict the potential for multistationarity of ‘regular’ networks without knowledge of parameter values. Especially for biochemical systems, however, CRNT’s large application potential cannot be realized because most realistic networks are degenerate in the sense of CRNT. Here, we show how degenerate networks can be regularized such that the theorems and algorithms of CRNT apply. We employ the method in a case study for a bacterial reaction network of moderate size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conradi, C., Flockerzi, D., Raisch, J., Stelling, J.: Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc. Natl. Acad. Sci. 104(49), 19175–19180 (2007)CrossRefGoogle Scholar
  2. 2.
    Doyle, F.J., Stelling, J.: Systems interface biology. J. R. Soc. Interface 10(3), 603–616 (2006)CrossRefGoogle Scholar
  3. 3.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors – I. The deficiency zero and deficiency one theorems. Chemical Engineering Science 42(10), 2229–2268 (1987)Google Scholar
  4. 4.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors – II. Multiple steady states for networks of deficiency one. Chemical Engineering Science 43(1), 1–25 (1988)Google Scholar
  5. 5.
    Flockerzi, D., Conradi, C.: Subnetwork analysis for multistationarity in mass action kinetics. Journal of Physics: Conference Series 138, 36 pages (012006) (2008)Google Scholar
  6. 6.
    Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for sparse polynomial systems in chemistry. Advances in Applied Mathematics 34(2), 252–294 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gunawardena, J.: Chemical reaction network theory for in-silico biologists. Bauer Center for Genomics Research (2003)Google Scholar
  8. 8.
    Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J.: Robustness of cellular functions. Cell 118(6), 675–685 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus Uhr
    • 1
  • Hans-Michael Kaltenbach
    • 1
  • Carsten Conradi
    • 2
  • Jörg Stelling
    • 1
  1. 1.Dept. Biosystems Science & EngineeringETH ZurichZürichSwitzerland
  2. 2.Max-Planck-Institute MagdeburgMagdeburgGermany

Personalised recommendations