Efficient Universal Quantum Circuits

  • Debajyoti Bera
  • Stephen Fenner
  • Frederic Green
  • Steve Homer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5609)


We define and construct efficient depth-universal and almost-size-universal quantum circuits. Such circuits can be viewed as general-purpose simulators for central quantum circuit classes and used to capture the computational power of the simulated class. For depth we construct universal circuits whose depth is the same order as the circuits being simulated. For size, there is a log factor blow-up in the universal circuits constructed here which is nearly optimal for polynomial size circuits.


Quantum Circuit Quantum Gate CNOT Gate Phase Gate Control Qubit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [D85]
    Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 400, pp. 97–117 (1985)Google Scholar
  2. [BGH07]
    Bera, D., Green, F., Homer, S.: Small depth quantum circuits. SIGACT News 38(2), 35–50 (2007)CrossRefGoogle Scholar
  3. [CH85]
    Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM Journal on Computing 14(4), 833–839 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [FFGHZ06]
    Fang, M., Fenner, S., Green, F., Homer, S., Zhang, Y.: Quantum lower bounds for fanout. Quantum Information and Computation 6(1), 46–57 (2006)MathSciNetzbMATHGoogle Scholar
  5. [HS05]
    Høyer, P., Špalek, R.: Quantum circuits with unbounded fan-out. Theory of Computing 1, 81–103 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [NC97]
    Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays. Phys. Rev. Lett. 79(2), 321–324 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [NC00]
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  8. [SR07]
    Sousa, P.B.M., Ramos, R.V.: Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate. Quantum Information and Computation 7(3), 228–242 (2007)Google Scholar
  9. [V76]
    Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of the 8th ACM Symposium on the Theory of Computing, pp. 196–203 (1976)Google Scholar
  10. [Y93]
    Yao, A.C.C.: Quantum circuit complexity. In: Proceedings of the 34th IEEE Symposium on Foundations of Computer Science, pp. 352–361 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Debajyoti Bera
    • 1
  • Stephen Fenner
    • 2
  • Frederic Green
    • 3
  • Steve Homer
    • 1
  1. 1.Department of Computer ScienceBoston UniversityBostonUSA
  2. 2.Department of Computer Science and EngineeringUniversity of South CarolinaColumbiaUSA
  3. 3.Department of Mathematics and Computer ScienceClark UniversityWorcesterUSA

Personalised recommendations