Determination of Glycan Structure from Tandem Mass Spectra

  • Sebastian Böcker
  • Birte Kehr
  • Florian Rasche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5609)


Glycans are molecules made from simple sugars that form complex tree structures. Glycans constitute one of the most important protein modifications, and identification of glycans remains a pressing problem in biology. Unfortunately, the structure of glycans is hard to predict from the genome sequence of an organism.

We consider the problem of deriving the topology of a glycan solely from tandem mass spectrometry data. We want to generate glycan tree candidates that sufficiently match the sample mass spectrum. Unfortunately, the resulting problem is known to be computationally hard. We present an efficient exact algorithm for this problem based on fixed-parameter algorithmics, that can process a spectrum in a matter of seconds. We also report some preliminary results of our method on experimental data. We show that our approach is fast enough in applications, and that we can reach very good de novo identification results. Finally, we show how to compute the number of glycan topologies of a given size.


Tandem Mass Spectrum Full Paper Sample Spectrum Glycan Structure Parent Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473(1), 4–8 (1999)CrossRefGoogle Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. ACM Theor. Comp., pp. 67–74. ACM Press, New York (2007)Google Scholar
  3. 3.
    Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Problem. Algorithmica 48(4), 413–432 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cooper, C.A., Gasteiger, E., Packer, N.H.: GlycoMod – a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1(2), 340–349 (2001)CrossRefGoogle Scholar
  5. 5.
    Dell, A., Morris, H.R.: Glycoprotein structure determination by mass spectrometry. Science 291(5512), 2351–2356 (2001)CrossRefGoogle Scholar
  6. 6.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J. 5, 397–409 (1988)CrossRefGoogle Scholar
  7. 7.
    Gaucher, S.P., Morrow, J., Leary, J.A.: STAT: a saccharide topology analysis tool used in combination with tandem mass spectrometry. Anal. Chem. 72(11), 2331–2336 (2000)CrossRefGoogle Scholar
  8. 8.
    Goldberg, D., Bern, M., Li, B., Lebrilla, C.B.: Automatic determination of O-glycan structure from fragmentation spectra. J. Proteome Res. 5(6), 1429–1434 (2006)CrossRefGoogle Scholar
  9. 9.
    Lochnit, G., Geyer, R.: Carbohydrate structure analysis of batroxobin, a thrombin-like serine protease from bothrops moojeni venom. Eur. J. Biochem. 228(3), 805–816 (1995)CrossRefGoogle Scholar
  10. 10.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Otter, R.: The number of trees. The Annals of Mathematics 49(3), 583–599 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Scott, J., Ideker, T., Karp, M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13(2), 133–144 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shan, B., Ma, B., Zhang, K., Lajoie, G.: Complexities and algorithms for glycan structure sequencing using tandem mass spectrometry. In: Proc. of Asia Pacific Bioinformatics Conference (APBC 2007), Advances in Bioinformatics and Computational Biology, pp. 297–306. Imperial College Press (2007)Google Scholar
  14. 14.
    Tang, H., Mechref, Y., Novotny, M.V.: Automated interpretation of MS/MS spectra of oligosaccharides. Bioinformatics 21(suppl. 1), i431–i439 (2005); Proc. of Intelligent Systems for Molecular Biology (ISMB 2005)Google Scholar
  15. 15.
    Zaia, J.: Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23(3), 161–227 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sebastian Böcker
    • 1
    • 2
  • Birte Kehr
    • 1
  • Florian Rasche
    • 1
  1. 1.Lehrstuhl für BioinformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Jena Centre for BioinformaticsJenaGermany

Personalised recommendations