A Fast Algorithm for Computing a Nearly Equitable Edge Coloring with Balanced Conditions

  • Akiyoshi Shioura
  • Mutsunori Yagiura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5609)

Abstract

We discuss the nearly equitable edge coloring problem on a multigraph and propose an efficient algorithm for solving the problem, which has a better time complexity than the previous algorithms. The coloring computed by our algorithm satisfies additional balanced conditions on the number of edges used in each color class, where conditions are imposed on the balance among all edges in the multigraph as well as the balance among parallel edges between each vertex pair. None of the previous algorithms are guaranteed to satisfy these balanced conditions simultaneously.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Correa, J., Goemans, M.X.: Improved bounds on nonblocking 3-stage Clos networks. SIAM J. 37, 870–894 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dugdale, J.K., Hilton, A.J.W.: Amalgamated factorizations of complete graphs. Combin. Probab. Comput. 3, 215–231 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Feige, U., Singh, M.: Edge coloring and decompositions of weighted graphs. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 405–416. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Hilton, A.J.W., de Werra, D.: Sufficient conditions for balanced and for equitable edge-colouring of graphs. O.R. Working paper 82/3, Département de Mathématiques, École Polytechnique Fédérate de Lausanne, Switzerland (1982)Google Scholar
  5. 5.
    Hilton, A.J.W., de Werra, D.: A sufficient condition for equitable edge-colourings of simple graphs. Discrete Math. 128, 179–201 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Nakano, S., Nishizeki, T.: Scheduling file transfers under port and channel constraints. Internat. J. Found. Comput. Sci. 4, 101–115 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Nakano, S., Suzuki, Y., Nishizeki, T.: An algorithm for the nearly equitable edge-coloring of graphs. IEICE Trans. Inf. & Syst. J78-D-I, 437–444 (1995) (in Japanese)Google Scholar
  8. 8.
    Song, H., Wu, J., Liu, G.: The equitable edge-coloring of series-parallel graphs. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4489, pp. 457–460. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    de Werra, D.: Equitable colorations of graphs. Revue française d’Informatique et de Recherche Operationelle R-3, pp. 3–8 (1971)Google Scholar
  10. 10.
    Xie, X., Ono, T., Nakano, S., Hirata, T.: An improved algorithm for the nearly equitable edge-coloring problem. IEICE Trans. Fund. E87-A, 1029–1033 (2004)Google Scholar
  11. 11.
    Xie, X., Yagiura, M., Ono, T., Hirata, T., Zwick, U.: An efficient algorithm for the nearly equitable edge coloring problem. J. Graph Algorithms Appl. 12, 383–399 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Akiyoshi Shioura
    • 1
  • Mutsunori Yagiura
    • 2
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  2. 2.Graduate School of Information ScienceNagoya UniversityNagoyaJapan

Personalised recommendations