Towards Enhanced Retrieval of Biological Models through Annotation-Based Ranking

  • Dagmar Köhn
  • Carsten Maus
  • Ron Henkel
  • Martin Kolbe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5647)

Abstract

Modelling and simulation methods gain increasing importance for the understanding of biological systems. The growing number of available computational models makes support in maintenance and retrieval of those models essential to the community. This article discusses which model information are helpful for efficient retrieval and how existing similarity measures and ranking techniques can be used to enhance the retrieval process, i. e. the model reuse. With the development of new tools and modelling formalisms, there also is an increasing demand for performing search independent of the models’ encoding. Therefore, the presented approach is not restricted to certain model storage formats. Instead, the model meta-information is used for retrieval and ranking of the search result. Meta-information include general information about the model, its encoded species and reactions, but also information about the model behaviour and related simulation experiment descriptions.

Keywords

model storage model retrieval model reuse annotation ontologies similarity ranking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.-S.L.: The universal protein resource (uniprot). Nucleic Acids Research 33, 154–159 (2005)CrossRefGoogle Scholar
  2. 2.
    Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Briefings in Bioinformatics 9(5), 404–421 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    Cormen, T.: Introduction to algorithms. MIT Press, Cambridge (2001)Google Scholar
  4. 4.
    Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.: An overview of cellml 1.1, a biological model description language. SIMULATION 79(12), 740–747 (2003)CrossRefGoogle Scholar
  5. 5.
    Ehrig, M., Haase, P., Hefke, M., Stojanovic, N.: Similarity for ontologies - a comprehensive framework. In: Workshop Enterprise Modelling and Ontology: Ingredients for Interoperability, at PAKM 2004 (2005)Google Scholar
  6. 6.
    Fishwick, P., Miller, J.: Ontologies for modeling and simulation: issues and approaches. In: Proceedings of the 2004 Winter Simulation Conference, pp. 259–264 (2004)Google Scholar
  7. 7.
    Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    Klipp, E., Liebermeister, W., Helbig, A., Kowald, A., Schaber, J.: Systems biology standards–the community speaks. Nature Biotechnology 25(4), 390–391 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    Knüpfer, C., Beckstein, C., Dittrich, P.: Towards a semantic description of bio-models: Meaning facets - a case study. In: Proceedings of the Second International Symposium on Semantic Mining in Biomedicine, June 2006, pp. 97–100 (2006)Google Scholar
  10. 10.
    Knüpfer, C., Le Novère, N.: Teddy - a terminology for the description of the dynamics of bio-models. Poster, Foundations of Systems Biology and Engineering (2007)Google Scholar
  11. 11.
    Köhn, D., Le Novère, N.: The kinetic simulation algorithm ontology (KiSAO). Web Site (2007), http://www.ebi.ac.uk/compneur-srv/kisao/
  12. 12.
    Köhn, D., Le Novère, N.: SED-ML – an XML format for the implementation of the MIASE guidelines. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 176–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Laibe, C., Le Novère, N.: MIRIAM Resources: tools to generate and resolve robust cross-references in Systems Biology. BMC Systems Biology 1(1), 58 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Le Novère, N.: Model storage, exchange and integration. BMC Neuroscience 7(suppl. 1) (2006)Google Scholar
  15. 15.
    Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(Database issue) (January 2006)Google Scholar
  16. 16.
    Le Novère, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J., Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J.L., Spence, H.D., Wanner, B.L.: Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotechnology 23(12), 1509–1515 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Lin, D.: An information-theoretic definition of similarity. In: ICML 1998: Proceedings of the Fifteenth International Conference on Machine Learning, San Francisco, CA, USA, pp. 296–304. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  18. 18.
    Lloyd, C.M.M., Lawson, J.R.R., Hunter, P.J.J., Nielsen, P.F.F.: The cellml model repository. Bioinformatics (July 2008)Google Scholar
  19. 19.
    Migliore, M., Morse, T.M., Davison, A.P., Marenco, L., Shepherd, G.M., Hines, M.L.: Modeldb: making models publicly accessible to support computational neuroscience. Neuroinformatics 1(1), 135–139 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Miller, J., Baramidze, G.: Simulation and the semantic web. In: Proceedings of the 37th Winter Simulation Conference, pp. 2371–2377 (2005)Google Scholar
  21. 21.
    Minsky, M.: Models, minds, machines. In: Proceedings of the IFIP Congress, pp. 45–49 (1965)Google Scholar
  22. 22.
    Olivier, B.G., Snoep, J.L.: Web-based kinetic modelling using jws online. Bioinformatics 20(13), 2143–2144 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    Overstreet, C., Nance, R., Balci, O.: Issues in enhancing model reuse. In: International Conference on Grand Challenges for Modeling and Simulation, pp. 27–31 (2002)Google Scholar
  24. 24.
    Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS, vol. 4695, pp. 184–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Schulz, M., Uhlendorf, J., Klipp, E., Liebermeister, W.: SBMLmerge, a system for combining biochemical network models. In: Genome informatics. International Conference on Genome Informatics, vol. 17(1), pp. 62–71 (2006)Google Scholar
  26. 26.
    Strömbäck, L., Hall, D., Lambrix, P.: A review of standards for data exchange within systems biology. Proteomics 7(6), 857–867 (2007)CrossRefPubMedGoogle Scholar
  27. 27.
    Tolk, A., Muguira, J.: The Levels of Conceptual Interoperability Model. In: Proceedings of the 2003 Fall Simulation Interoperability Workshop (2003)Google Scholar
  28. 28.
    Uhrmacher, A., Degenring, D., Lemcke, J., Krahmer, M.: Towards reusing model components in systems biology. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 192–206. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    W3C. Resource Description Framework (1997), http://www.w3.org/RDF
  30. 30.
    W3C. XPath (November 1999), http://www.w3.org/TR/xpath
  31. 31.
    Wang, T., Wang, J., Yu, Y., Shen, R., Liu, J., Chen, H.: Metadata pro: Ontology-based metadata processing for web resources. In: Bussler, C.J., Hong, S.-k., Jun, W., Kaschek, R., Kinshuk, Krishnaswamy, S., Loke, S.W., Oberle, D., Richards, D., Sharma, A., Sure, Y., Thalheim, B. (eds.) WISE 2004 Workshops. LNCS, vol. 3307, pp. 34–45. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dagmar Köhn
    • 1
  • Carsten Maus
    • 2
  • Ron Henkel
    • 1
  • Martin Kolbe
    • 1
  1. 1.Institute of Computer Science, Database and Information Systems GroupUniversity of RostockRostockGermany
  2. 2.Institute of Computer Science, Modelling and Simulation GroupUniversity of RostockRostockGermany

Personalised recommendations