Design and Architecture of Web Services for Simulation of Biochemical Systems

  • Joseph O. Dada
  • Pedro Mendes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5647)

Abstract

Computer simulation of biochemical networks plays a central role in systems biology. While there are several software packages for modeling and simulation of these networks, they are based on graphical user interfaces that operate on the local computer. However, it is now often desirable to operate simulation tasks through a distributed computing framework where data can be gathered from different sources and distinct subtasks operated in different physical computers. In this paper we describe a web services implementation for the COPASI biochemical network simulator (CopasiWS). COPASI provides a range of numerical methods for simulation, optimization and analysis of biochemical reaction networks. Our aim is to allow easy integration of these powerful functionalities with local and remote services to provide a distributed computing platform for the simulation and analysis of biochemical models. One immediate result of this work is that simulation tasks are now available to be used in a platform– and language–independent manner as components of distributed workflows, for example using the Taverna workflow engine. We describe the CopasiWS architecture, key design and implementation issues, and illustrate the range of services available through a web portal interface (CopasiWeb).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI — a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    Funahashi, A., Tanimura, N., Morohashi, M., Kitano, H.: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1, 159–162 (2003)CrossRefGoogle Scholar
  3. 3.
    Sauro, H.M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., Kitano, H.: Next Generation Simulation Tools: The Systems Biology Workbench and BioSPICE Integration. A Journal of Integrative Biology 7(4), 355–372 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 27(1), 29–34 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baxevanis, A.D.: Searching NCBI databases using Entrez. Current protocols in bioinformatics 24, 1.3.1–1.3.26 (2008)Google Scholar
  6. 6.
    Labarga, A., Valentin, F., Anderson, M., Lopez, R.: Web services at the European bioinformatics institute. Nucleic Acids Research 35, W6–W11 (2007)CrossRefGoogle Scholar
  7. 7.
    Le Novére, N., Bornstein, B., Broicher, A., Courtot, M., Donizell, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J., Hucka, M.: Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research 34, D689–D691 (2006)CrossRefGoogle Scholar
  8. 8.
    Le Novére, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J., Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J., Spence, H., Wanner, B.: Minimum Information Requested In the Annotation of Biochemical Models (MIRIAM). Nature Biotechnology 23(12), 1509–1515 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    Systems Biology Ontology (SBO), http://www.ebi.ac.uk/sbo/
  10. 10.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research, W729–W732 (2006)Google Scholar
  11. 11.
    Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana Workflow Environment: Architecture and Application. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science. Scientific Workflows for Grids, pp. 320–339. Springer, London (2007)Google Scholar
  12. 12.
    Mendes, P.: GEPASI: A software package for modeling the dynamics, steady states and control of biochemical biology and other systems. Computer Application in the Biosciences 9(5), 563–571 (1993)Google Scholar
  13. 13.
    Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novére, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J.: The Systems Biology Markup Language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)CrossRefPubMedGoogle Scholar
  14. 14.
    Web Services Interoperability Basic Profile, 1.1, http://www.ws-i.org/Profiles/BasicProfile-1.1.html
  15. 15.
    Bornstein, B.J., Keating, S.M., Jouraku, A., Hucka, M.: LibSBML: An API Library for SBML. Bioinformatics 24(6), 880–881 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dada, J.O., Paton, N.W., Mendes, P.: Systems Biology Results Markup Language — Structure and Facilities for Systems Biology Results Representation (SBRML Specification) (2008), http://www.comp-sys-bio.org/tiki-index.php?page=SBRML
  17. 17.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: The Condor Experience. Concurrency and Computation: Practice and Experience 17, 2–4 (2005)CrossRefGoogle Scholar
  18. 18.
    Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing 4(1), 136–148 (1983)CrossRefGoogle Scholar
  19. 19.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  20. 20.
    Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1996)Google Scholar
  21. 21.
    Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)CrossRefPubMedGoogle Scholar
  22. 22.
    Java programming language, http://java.sun.com
  23. 23.
    Axis toolkit site, http://ws.apache.org/axis/
  24. 24.
    Tomcat Apache servlet site, http://tomcat.apache.org/
  25. 25.
  26. 26.
  27. 27.
    CopasiWeb: Web Portal Interface to CopasiWS, http://turing.mib.man.ac.uk:8080/CopasiWeb/CopasiWebUI/
  28. 28.
    Li, P., Oinn, T., Soiland, S., Kell, D.B.: Automated manipulation of systems biology models using libSBML within Taverna workflows. Bioinformatics 24(2), 287–289 (2008)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Joseph O. Dada
    • 1
  • Pedro Mendes
    • 1
    • 2
  1. 1.School of Computer Science and Manchester Centre for Integrative Systems BiologyThe University of Manchester, Manchester Interdisciplinary BiocentreManchesterUK
  2. 2.Virginia Bioinformatics InstituteVirginia TechBlacksburgUSA

Personalised recommendations