Advertisement

Towards an Affective Aware Home

  • Benţa Kuderna-Iulian
  • Cremene Marcel
  • Todica Valeriu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5597)

Abstract

The nowadays smart homes run predefined rules, but the user’s desired behaviour for a smart home varies, as his/her needs change over time. To edit the initial rules is a difficult task for a usual user. We propose a control mechanism that allows the system to learn the new behaviour preferences without editing the rules, but responding emotionally to the system’s decisions. In order to capture the emotion reaction we use FaceReader, a tool for facial analyses, adapting it to read three valence levels that work as positive, negative or neutral feedback. The results in training a MLP neural network to learn the preferred behaviour from the user’s emotional reaction are discussed. Ontology is used in order to describe the context.

Keywords

Smart Home Affective Computing Context Awareness Ontology Neural Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishigaki, K., Yasumoto, K., Shibata, N., Ito, M., Higashino, T.: Framework and rule-based language for facilitating context-aware computing using information appliances. In: First International Workshop on Services and Infrastructure for the Ubiquitous and Mobile Internet, pp. 345–351 (2005)Google Scholar
  2. 2.
    Guan, D., Yuan, W., Cho, S.J., Gavrilov, A., Lee, Y.-K., Lee, S.: Devising a Context Selection-Based Reasoning Engine for Context-Aware Ubiquitous Computing Middleware. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 849–857. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Gu, T., Pung, H.K., Zhang, D.: A Service-Oriented Middleware for Building Context-Aware Services. Elsevier JNCA 28(1), 1–18 (2005)Google Scholar
  4. 4.
    Wang, X., Zhang, D., Gu, T., Pung, H.K.: Ontology Based Context Modeling and Reasoning using OWL. In: Proceedings of Workshop on Context Modeling and Reasoning, Orlando (2004)Google Scholar
  5. 5.
    Yau, S.S., Liu, J.: Hierarchical Situation Modeling and Reasoning for Pervasive Computing. In: Proceedings of the Fourth IEEE Workshop on Software Technologies For Future Embedded and Ubiquitous Systems, and the Second international Workshop on Collaborative Computing, integration, and Assurance, Washington (2006)Google Scholar
  6. 6.
    Ejigu, D., Scuturici, M., Brunie, L.: An Ontology-Based Approach to Context Modeling and Reasoning in Pervasive Computing. In: Proceedings of the Fifth IEEE international Conference on Pervasive Computing and Communications Workshops, Washington (2007) Google Scholar
  7. 7.
    Buriano, L., Marchetti, M., Carmagnola, F., Cena, F., Gena, C., Torre, I.: The Role of Ontologies in Context-Aware Recommender Systems. In: IEEE International Conference on Mobile Data Management, p. 80 (2006)Google Scholar
  8. 8.
    Krummenacher, R., Strang, T.: Ontology-Based Context Modeling. In: 3rd Workshop on Context Awareness for Proactive Systems, Guildford (2007)Google Scholar
  9. 9.
    Heckmann, D.: Ubiquitous User Modeling, PhD. Thesis, Saarbrucken (2005)Google Scholar
  10. 10.
    Benta, K.-I., Rarau, A., Cremene, M.: Ontology Based Affective Context Representation. In: Euro American Association on Telematics and Information Systems, Faro (2007)Google Scholar
  11. 11.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Using context and preferences to implement self-adapting pervasive computing applications. Software-practice & Experience 36(11-12), 1307–1330 (2006)CrossRefGoogle Scholar
  12. 12.
    Anh, K., Lee, Y.-K., Lee, S.: OWL-Based User Preference and Behavior Routine Ontology for Ubiquitous System. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1615–1622. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hasan, M.K., Anh, K., Mehedy, L., Lee, Y.-K., Lee, S.: Conflict Resolution and Preference Learning in Ubiquitous Environment. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNAI), vol. 4114, pp. 355–366. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Flanagan, J.: Context awareness in a mobile device: Ontologies versus unsupervised/supervised learning. In: Proceedings of International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning, Espoo, pp. 167–170 (2005)Google Scholar
  15. 15.
    Suh, Y., Kang, D., Woo, W.: Context-based User Profile Management for Personalized Services. In: Ubicomp, workshop ubiPCMM (2005)Google Scholar
  16. 16.
    Broekens, J.: Emotion and Reinforcement: Affective Facial Expressions Facilitate Robot Learning. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) ICMI/IJCAI Workshops 2007. LNCS (LNAI), vol. 4451, pp. 113–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Noldus Information Technology, FaceReaderTM, http://www.noldus.com/human-behavior-research/products/facereader
  18. 18.
    Phidgets - USB sensing and control, http://www.phidgets.com/
  19. 19.
    Feed Forward Neural Networks v2.0, http://aydingurel.brinkster.net/neural/
  20. 20.
    Anh, K.: User Preference Learning in Context-aware Computing. Master thesis, Department of Computer Engineering, Faculty of Graduate School of Kyung Hee University, Korea (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Benţa Kuderna-Iulian
    • 1
  • Cremene Marcel
    • 1
  • Todica Valeriu
    • 1
  1. 1.Comm.Dept.Technical University of Cluj-NapocaRomania

Personalised recommendations