Advertisement

One More Decidable Class of Finitely Ground Programs

  • Yuliya Lierler
  • Vladimir Lifschitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5649)

Abstract

When a logic program is processed by an answer set solver, the first task is to generate its instantiation. In a recent paper, Calimeri et el. made the idea of efficient instantiation precise for the case of disjunctive programs with function symbols, and introduced the class of “finitely ground” programs that can be efficiently instantiated. Since that class is undecidable, it is important to find its large decidable subsets. In this paper, we introduce such a subset—the class of argument-restricted programs. It includes, in particular, all finite domain programs, ω-restricted programs, and λ-restricted programs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 267–279. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 266–271. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Mahfoudh, M., Niebert, P., Asarin, E., Maler, O.: A satisfiability checker for difference logic. In: Proceedings of International Conference on the Theory and Applications of Satisfiability Testing (SAT), pp. 222–230 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuliya Lierler
    • 1
  • Vladimir Lifschitz
    • 1
  1. 1.Department of Computer SciencesUniversity of Texas at AustinUSA

Personalised recommendations