Finding Similar or Diverse Solutions in Answer Set Programming

  • Thomas Eiter
  • Esra Erdem
  • Halit Erdoğan
  • Michael Fink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5649)

Abstract

We study finding similar or diverse solutions of a given computational problem, in answer set programming, and introduce offline methods and online methods to compute them using answer set solvers. We analyze the computational complexity of some problems that are related to finding similar or diverse solutions, and show the applicability and effectiveness of our methods in phylogeny reconstruction.

Keywords

similar/diverse solutions answer set programming phylogenies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, E.N.: Consensus techniques and the comparison of taxonomic trees. Syst. Zool 21, 390–397 (1972)CrossRefGoogle Scholar
  2. 2.
    Bailleux, O., Marquis, P.: DISTANCE-SAT: complexity and algorithms. In: Proc. of AAAI, pp. 642–647 (1999)Google Scholar
  3. 3.
    Bluis, J., Shin, D.-G.: Nodal distance algorithm: Calculating a phylogenetic tree comparison metric. In: Proc. of BIBE, p. 87 (2003)Google Scholar
  4. 4.
    Brooks, D.R., Erdem, E., Erdoğan, S.T., Minett, J.W., Ringe, D.: Inferring phylogenetic trees using answer set programming. JAR 39(4), 471–511 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brooks, D.R., Erdem, E., Minett, J.W., Ringe, D.: Character-based cladistics and answer set programming. In: Proc. of PADL, pp. 37–51 (2005)Google Scholar
  6. 6.
    Brooks, D.R., McLennan, D.A.: Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology. University of Chicago Press, Chicago (1991)Google Scholar
  7. 7.
    Chen, Z.-Z., Toda, S.: The Complexity of Selecting Maximal Solutions. Information and Computation 119, 231–239 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5, 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Eiter, T., Subrahmanian, V.S.: Heterogeneous active agents, ii: Algorithms and complexity. Artif. Intell. 108(1-2), 257–307 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Proc. of IJCAI, pp. 386–392 (2007)Google Scholar
  11. 11.
    Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Appl. Math. 155(12), 1549–1561 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in constraint programming. In: Proc. of AAAI, pp. 372–377 (2005)Google Scholar
  13. 13.
    Hebrard, E., O’Sullivan, B., Walsh, T.: Distance constraints in constraint satisfaction. In: Proc. of IJCAI, pp. 106–111 (2007)Google Scholar
  14. 14.
    Hon, W.-K., Kao, M.-Y., Lam, T.-W.: Improved Phylogeny Comparisons: Non-shared Edges, Nearest Neighbor Interchanges, and Subtree Transfers. In: Hon, W.-K., Kao, M.-Y., Lam, T.-W. (eds.) Algorithms and Computation, pp. 369–382. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 357–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Marques-Silva, J., Sakallah, K.: A search algorithm for propositional satisfiability. IEEE Trans. Computers 5, 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nye, T.M., Lio, P., Gilks, W.R.: A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22(1), 117–119 (2006)CrossRefGoogle Scholar
  18. 18.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  19. 19.
    Ringe, D., Warnow, T., Taylor, A.: Indo-European and computational cladistics. Transactions of the Philological Society 100(1), 59–129 (2002)CrossRefGoogle Scholar
  20. 20.
    Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53(1-2), 131–147 (1981)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Applied Mathematics 105, 147–158 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Proc. of PADL, pp. 305–319 (1998)Google Scholar
  23. 23.
    White, J.P., O’Connell, J.F.: A Prehistory of Australia, New Guinea, and Sahul. Academic, San Diego (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Esra Erdem
    • 2
  • Halit Erdoğan
    • 2
  • Michael Fink
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria
  2. 2.Faculty of Engineering and Natural SciencesSabancı UniversityIstanbulTurkey

Personalised recommendations