Advertisement

Dimensions of Dataspaces

  • Cornelia Hedeler
  • Khalid Belhajjame
  • Alvaro A. A. Fernandes
  • Suzanne M. Embury
  • Norman W. Paton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5588)

Abstract

The vision of dataspaces has been articulated as providing various of the benefits of classical data integration, but with reduced up-front costs, combined with opportunities for incremental refinement, enabling a “pay as you go” approach. However, results that seek to realise the vision exhibit considerable variety in their contexts, priorities and techniques, to the extent that the definitional characteristics of dataspaces are not necessarily becoming clearer over time. With a view to clarifying the key concepts in the area, encouraging the use of consistent terminology, and enabling systematic comparison of proposals, this paper defines a collection of dimensions that capture both the components that a dataspace management system may contain and the lifecycle it may support, and uses these dimensions to characterise representative proposals.

Keywords

Data Integration Data Resource User Feedback Query Evaluation Union Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)CrossRefGoogle Scholar
  2. 2.
    Halevy, A., Franklin, M., Maier, D.: Principles of dataspace systems. In: PODS 2006, pp. 1–9. ACM, New York (2006)Google Scholar
  3. 3.
    Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration systems. In: SIGMOD 2008, pp. 861–874. ACM, New York (2008)Google Scholar
  4. 4.
    Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace systems. In: SIGMOD 2008, pp. 847–860. ACM, New York (2008)Google Scholar
  5. 5.
    Dittrich, J.P., Salles, M.A.V.: idm: A unified and versatile data model for personal dataspace management. In: VLDB 2006, pp. 367–378. ACM, New York (2006)Google Scholar
  6. 6.
    Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.: Web-scale data integration: You can afford to pay as you go. In: CIDR 2007, pp. 342–350 (2007)Google Scholar
  7. 7.
    Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa, L.: The clio project: managing heterogeneity. SIGMOD Record 30(1), 78–83 (2001)CrossRefGoogle Scholar
  8. 8.
    Pottinger, R., Bernstein, P.A.: Schema merging and mapping creation for relational sources. In: EDBT 2008, pp. 73–84 (2008)Google Scholar
  9. 9.
    Haas, L., Lin, E., Roth, M.: Data integration through database federation. IBM Systems Journal 41(4), 578–596 (2002)CrossRefGoogle Scholar
  10. 10.
    Leser, U., Naumann, F.: (almost) hands-off information integration for the life sciences. In: CIDR 2005, pp. 131–143 (2005)Google Scholar
  11. 11.
    Dong, X., Halevy, A.Y.: A platform for personal information management and integration. In: CIDR 2005, pp. 119–130 (2005)Google Scholar
  12. 12.
    Liu, J., Dong, X., Halevy, A.: Answering structured queries on unstructured data. In: WebDB 2006, pp. 25–30 (2006)Google Scholar
  13. 13.
    Vaz Salles, M.A., Dittrich, J.P., Karakashian, S.K., Girard, O.R., Blunschi, L.: itrails: Pay-as-you-go information integration in dataspaces. In: VLDB 2007, pp. 663–674. ACM, New York (2007)Google Scholar
  14. 14.
    Howe, B., Maier, D., Rayner, N., Rucker, J.: Quarrying dataspaces: Schemaless profiling of unfamiliar information sources. In: ICDE Workshops, pp. 270–277. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  15. 15.
    Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based shema matching. In: ICDE 2005, pp. 57–68 (2005)Google Scholar
  16. 16.
    Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: VLDB 2007, pp. 687–698 (2007)Google Scholar
  17. 17.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based on uncertain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cornelia Hedeler
    • 1
  • Khalid Belhajjame
    • 1
  • Alvaro A. A. Fernandes
    • 1
  • Suzanne M. Embury
    • 1
  • Norman W. Paton
    • 1
  1. 1.School of Computer ScienceThe University of ManchesterManchesterUK

Personalised recommendations