Improved Team Performance Using EEG- and Context-Based Cognitive-State Classifications for a Vehicle Crew

  • Kevin R. Dixon
  • Konrad Hagemann
  • Justin Basilico
  • Chris Forsythe
  • Siegfried Rothe
  • Michael Schrauf
  • Wilhelm E. Kincses
Conference paper

DOI: 10.1007/978-3-642-02812-0_43

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)
Cite this paper as:
Dixon K.R. et al. (2009) Improved Team Performance Using EEG- and Context-Based Cognitive-State Classifications for a Vehicle Crew. In: Schmorrow D.D., Estabrooke I.V., Grootjen M. (eds) Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. FAC 2009. Lecture Notes in Computer Science, vol 5638. Springer, Berlin, Heidelberg

Abstract

We present an augmented cognition (AugCog) system that utilizes two sources to assess cognitive state as a basis for actions to improve operator performance. First, continuous EEG is measured and signal processing algorithms utilized to identify patterns of activity indicative of high cognitive demand. Second, data from the automobile is used to infer the ongoing driving context. Subjects participated as eleven 2-person crews consisting of a driver/ navigator and a commander/gunner. While driving a closed-loop test route, the driver received through headphones a series of communications and had to perform two secondary tasks. Certain segments of the route were designated as threat zones. The commander was alerted when entering a threat zone and their task was to detect targets mounted on the roadside and engage those targets To determine targeting success, a photo was taken with each activation of the trigger and these photos were assessed with respect to the position of the reticle relative to the target. In a secondary task, the commander was presented a series of communications through headphones. Our results show that it is possible to reliably discriminate different cognitive states on the basis of neuronal signals. Results also confirmed our hypothesis: improved performance at the crew level in the AugCog condition for a secondary communications tasks, as compared to a control condition, with no change in performance for the primary tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kevin R. Dixon
    • 1
  • Konrad Hagemann
    • 2
  • Justin Basilico
    • 1
  • Chris Forsythe
    • 1
  • Siegfried Rothe
    • 2
  • Michael Schrauf
    • 2
  • Wilhelm E. Kincses
    • 2
  1. 1.Sandia National LaboratoriesAlbuquerqueU.S.A.
  2. 2.Group Research, 059/G024-BBDaimler AGSindelfingenGermany

Personalised recommendations