A Semantic Content-Based Recommender System Integrating Folksonomies for Personalized Access

  • Pasquale Lops
  • Marco de Gemmis
  • Giovanni Semeraro
  • Cataldo Musto
  • Fedelucio Narducci
  • Massimo Bux
Part of the Studies in Computational Intelligence book series (SCI, volume 229)


Basic content personalization consists in matching up the attributes of a user profile, in which preferences and interests are stored, against the attributes of a content object. The Web 2.0 (r)evolution and the advent of user generated content (UGC) have changed the game for personalization, since the role of people has evolved from passive consumers of information to that of active contributors. One of the forms of UGC that has drawn more attention from the research community is folksonomy, a taxonomy generated by users who collaboratively annotate and categorize resources of interests with freely chosen keywords called tags.

In this chapter, we intend to investigate whether folksonomies might be a valuable source of information about user interests for a recommender system. In order to achieve that goal, folksonomies have been included into ITR (ITem Recommender), a content-based recommender system developed at the University of Bari [7]. Specifically, static content consisting of the descriptions of the items in a collection have been enriched with dynamic UGC through social tagging techniques.

The new recommender system, called FIRSt (Folksonomy-based Item Recommender syStem), extends the original ITR system integrating UGC management by letting users to express their preferences for items by entering a numerical rating as well as to annotate rated items with free tags.

The main contribution of the chapter is an integrated strategy that enables a content-based recommender to infer user interests by applying machine learning techniques, both on official item descriptions provided by a publisher and on tags which users adopt to freely annotate relevant items.

Static content and tags are preventively analyzed by advanced linguistic techniques in order to capture the semantics of the user interests, often hidden behind keywords. The proposed approach has been evaluated in the domain of cultural heritage personalization. Experiments involving 40 real users show an improvement in the predictive accuracy of the tag-augmented recommender compared to the pure content-based one.


Content-based Recommender Systems Web 2.0 Folksonomy Machine Learning Semantics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  2. 2.
    Basile, P., de Gemmis, M., Gentile, A., Iaquinta, L., Lops, P., Semeraro, G.: META - MultilanguagE Text Analyzer. In: Proc. of the Language and Speech Technnology Conference, pp. 137–140 (2008)Google Scholar
  3. 3.
    Basile, P., Degemmis, M., Gentile, A., Lops, P., Semeraro, G.: UNIBA: JIGSAW algorithm for Word Sense Disambiguation. In: Proceedings of the 4th ACL 2007 International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic, June 23-24. Association for Computational Linguistics, pp. 398–401 (2007)Google Scholar
  4. 4.
    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Cantador, I., Szomszor, M., Alani, H., Fernández, M., Castells, P.: Enriching Ontological User Profiles with Tagging History for Multi-Domain Recommendations. In: Proc. of the Collective Semantics: Collective Intelligence and the Semantic Web, CISWeb2008, Tenerife, Spain (2008)Google Scholar
  6. 6.
    Carmagnola, F., Cena, F., Cortassa, O., Gena, C., Torre, I.: Towards a tag-based user model: How can user model benefit from tags? In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS, vol. 4511, pp. 445–449. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that exploits WordNet-based user profiles for neighborhood formation. User Model. User-Adapt. Interact. 17(3), 217–255 (2007)CrossRefGoogle Scholar
  8. 8.
    Degemmis, M., Lops, P., Semeraro, G., Basile, P.: Integrating tags in a semantic content-based recommender. In: Pu, P., Bridge, D.G., Mobasher, B., Ricci, F. (eds.) Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October 23-25, 2008, pp. 163–170. ACM, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Diederich, J., Iofciu, T.: Finding communities of practice from user profiles based on folksonomies. In: Innovative Approaches for Learning and Knowledge Sharing, EC-TEL Workshop Proc., pp. 288–297 (2006)Google Scholar
  10. 10.
    Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29(2-3), 103–130 (1997)CrossRefMATHGoogle Scholar
  11. 11.
    Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: Proc. of the Latin American Web Conference, Washington, DC, USA, pp. 32–41. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  12. 12.
    Hanani, U., Shapira, B., Shoval, P.: Information Filtering: Overview of Issues, Research and Systems. User Model. User-Adapt. Interact. 11(3), 203–259 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  14. 14.
    Kim, S.-B., Han, K.-S., Rim, H.-C., Myaeng, S.-H.: Some effective techniques for naive bayes text classification. IEEE Trans. Knowl. Data Eng. 18(11), 1457–1466 (2006)CrossRefGoogle Scholar
  15. 15.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. of IJCAI-1995, pp. 1137–1145 (1995)Google Scholar
  16. 16.
    Leacock, C., Chodorow, M., Miller, G.: Using corpus statistics and wordnet relations for sense identification. Computational Linguistics 24(1), 147–165 (1998)Google Scholar
  17. 17.
    Lee, W.S.: Collaborative learning for recommender systems. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 314–321. Morgan Kaufmann, San Francisco (2001)Google Scholar
  18. 18.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comp. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  19. 19.
    Lops, P., Degemmis, M., Semeraro, G.: Improving Social Filtering Techniques Through WordNet-Based User Profiles. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS, vol. 4511, pp. 268–277. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing, ch. 7: Word Sense Disambiguation, pp. 229–264. The MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification. In: AAAI 1998 Workshop on Learning for Text Categorization, pp. 41–48 (1998)Google Scholar
  22. 22.
    Michlmayr, E., Cayzer, S.: Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access. In: Proc. of the Workshop on Tagging and Metadata for Social Information Organization, Int. WWW Conf. (2007)Google Scholar
  23. 23.
    Miller, G.: Wordnet: An on-line lexical database. International Journal of Lexicography 3(4) (Special Issue) (1990)Google Scholar
  24. 24.
    Mladenic, D.: Text-learning and related intelligent agents: a survey. IEEE Intelligent Systems 14(4), 44–54 (1999)CrossRefGoogle Scholar
  25. 25.
    Resnick, P., Varian, H.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  26. 26.
    Royce, S.A., Straits, B.C.: Approaches to Social Research, 3rd edn. Oxford University Press, New York (1999)Google Scholar
  27. 27.
    Schwab, I., Kobsa, A., Koychev, I.: Learning user interests through positive examples using content analysis and collaborative filtering (2001)Google Scholar
  28. 28.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comp. Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  29. 29.
    Semeraro, G., Basile, P., de Gemmis, M., Lops, P.: User Profiles for Personalizing Digital Libraries. In: Theng, Y.-L., Foo, S., Lian, D.G.H., Na, J.-C. (eds.) Handbook of Research on Digital Libraries: Design, Development and Impact, pp. 149–158. IGI Global (2009) ISBN 978-159904879-6Google Scholar
  30. 30.
    Semeraro, G., Degemmis, M., Lops, P., Basile, P.: Combining learning and word sense disambiguation for intelligent user profiling. In: Proc. of IJCAI 2007, pp. 2856–2861. M. Kaufmann, California (2007)Google Scholar
  31. 31.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating/word of mouth. In: Proceedings of ACM CHI 1995 Conference on Human Factors in Computing Systems, Denver, Colorado, United States, vol. 1, pp. 210–217 (1995)Google Scholar
  32. 32.
    Stock, O., Zancanaro, M., Busetta, P., Callaway, C., Krüger, A., Kruppa, M., Kuflik, T., Not, E., Rocchi, C.: Adaptive, intelligent presentation of information for the museum visitor in PEACH. User Modeling and User-Adapted Interaction 17(3), 257–304 (2007)CrossRefGoogle Scholar
  33. 33.
    Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., Servedio, V.D.P.: Folksonomies, the semantic web, and movie recommendation. In: Proc. of the Workshop on Bridging the Gap between Semantic Web and Web 2.0 at the 4th ESWC (2007)Google Scholar
  34. 34.
    Trant, J., Wyman, B.: Investigating social tagging and folksonomy in art museums with steve. museum. In: Collaborative Web Tagging Workshop at WWW 2006, Edinburgh, Scotland (May 2006)Google Scholar
  35. 35.
    Wang, Y., Aroyo, L., Stash, N., Rutledge, L.: Interactive user modeling for personalized access to museum collections: The Rijksmuseum case study. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS, vol. 4511, pp. 385–389. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Yeung, C.M.A., Gibbins, N., Shadbolt, N.: A study of user profile generation from folksonomies. In: Proc. of the Workshop on Social Web and Knowledge Management, WWW Conf. (2008)Google Scholar
  37. 37.
    Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., Fu, R.: Improved recommendation based on collaborative tagging behaviors. In: Proc. of Int. Conf. on Intelligent User Interfaces. ACM Press, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pasquale Lops
    • 1
  • Marco de Gemmis
    • 1
  • Giovanni Semeraro
    • 1
  • Cataldo Musto
    • 1
  • Fedelucio Narducci
    • 1
  • Massimo Bux
    • 1
  1. 1.Department of Computer ScienceUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations