Advertisement

C*-algebras

  • Christian Bär
  • Christian Becker
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 786)

Abstract

In this chapter we will collect those basic concepts and facts related to C*-algebras that will be needed later on. We give complete proofs. In Sects. 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C*-algebras, see, e.g. [2–6].

Keywords

Tensor Product Pure State Convex Combination Compact Hausdorff Space Universal Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. EMS Publishing House, Zürich (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin Heidelberg (2002)Google Scholar
  3. 3.
    Davidson, K.: C_-algebras by example. AMS, Providence (1997)Google Scholar
  4. 4.
    Dixmier, J.: Les C*-algèbres et leurs représentations, 2nd edition, Gauthier-Villars Éditeur, Paris (1969)Google Scholar
  5. 5.
    Murphy, G.: C*-algebras and operator theory. Academic Press, Boston (1990)Google Scholar
  6. 6.
    Takesaki, M.: Theory of Operator Algebra I, Springer, Berlin, Heidelberg, New York (2002)Google Scholar
  7. 7.
    Manuceau, J.: C*-algèbre de relations de commutation. Ann. Inst. H. Poincaré Sect. A (N.S.) 8, 139 (1968)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. Springer, Berlin Heidelberg 2002Google Scholar
  9. 9.
    Baez, F.: Bell’s inequality for C*-Algebras. Lett. Math. Phys. 13(2), 135–136 (1987)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institut für Mathematik, Universität PotsdamPotsdamGermany

Personalised recommendations