Advertisement

The Complexity of Reasoning for Fragments of Default Logic

  • Olaf Beyersdorff
  • Arne Meier
  • Michael Thomas
  • Heribert Vollmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5584)

Abstract

Default logic was introduced by Reiter in 1980. In 1992, Gottlob classified the complexity of the extension existence problem for propositional default logic as \(\Sigma^{\rm P}_2\)-complete, and the complexity of the credulous and skeptical reasoning problem as \(\Sigma^{\rm P}_2\)-complete, resp. \(\Pi^{\rm P}_2\)-complete. Additionally, he investigated restrictions on the default rules, i. e., semi-normal default rules. Selman made in 1992 a similar approach with disjunction-free and unary default rules. In this paper we systematically restrict the set of allowed propositional connectives. We give a complete complexity classification for all sets of Boolean functions in the meaning of Post’s lattice for all three common decision problems for propositional default logic. We show that the complexity is a trichotomy (\(\Sigma^{\rm P}_2\)-, NP-complete, trivial) for the extension existence problem, whereas for the credulous and sceptical reasoning problem we get a finer classification down to NL-complete cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCRV03]
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)CrossRefGoogle Scholar
  2. [BEZ02]
    Ben-Eliyahu-Zohary, R.: Yet some more complexity results for default logic. Artificial Intelligence 139(1), 1–20 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BMTV08]
    Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of propositional implication. ACM Computing Research Repository, arXiv:0811.0959v1 [cs.CC] (2008)Google Scholar
  4. [BO02]
    Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Trans. Comput. Logic 3(2), 226–278 (2002)MathSciNetCrossRefGoogle Scholar
  5. [CHS07]
    Chapdelaine, P., Hermann, M., Schnoor, I.: Complexity of default logic on generalized conjunctive queries. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 58–70. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [Got92]
    Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic Computation 2(3), 397–425 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Got95]
    Gottlob, G.: Translating default logic into standard autoepistemic logic. J. ACM 42(4), 711–740 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Kon88]
    Konolige, K.: On the relation between default and autoepistemic logic. Artificial Intelligence 35(3), 343–382 (1988); Erratum: Artificial Intelligence 41(1), 115MathSciNetCrossRefzbMATHGoogle Scholar
  9. [KS91]
    Kautz, H.A., Selman, B.: Hard problems for simple default logics. Artificial Intelligence 49, 243–279 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Lew79]
    Lewis, H.: Satisfiability problems for propositional calculi. Mathematical Systems Theory 13, 45–53 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [McC80]
    McCarthy, J.: Circumscription – a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [MT93]
    Marek, V.W., Truszczyński, M.: Nonmonotonic Logic. Artificial Intelligence. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  13. [Pap94]
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  14. [Pos41]
    Post, E.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5, 1–122 (1941)MathSciNetGoogle Scholar
  15. [Rei80]
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Sel82]
    Selman, A.L.: Reductions on NP and p-selective sets. Theoretical Computer Science 19, 287–304 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [SI90]
    Sridhar, R., Iyengar, S.: Efficient parallel algorithms for functional dependency manipulations. In: Proc. 2nd DPDS, pp. 126–137 (1990)Google Scholar
  18. [Sti90]
    Stillman, J.: It’s not my default: The complexity of membership problems in restricted propositional default logics. In: Proc. 8th AAAI, pp. 571–578 (1990)Google Scholar
  19. [Vol99]
    Vollmer, H.: Introduction to Circuit Complexity. Texts in Theoretical Computer Science. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  • Arne Meier
    • 1
  • Michael Thomas
    • 1
  • Heribert Vollmer
    • 1
  1. 1.Institut für Theoretische InformatikGottfried Wilhelm Leibniz UniversitätHannoverGermany

Personalised recommendations