Abstract

One of the most important structural parameters of graphs is treewidth, a measure for the “tree-likeness” and thus in many cases an indicator for the hardness of problem instances. The smaller the treewidth, the closer the graph is to a tree and the more efficiently the underlying instance often can be solved. However, computing the treewidth of a graph is NP-hard in general. In this paper we propose an encoding of the decision problem whether the treewidth of a given graph is at most k into the propositional satisfiability problem. The resulting SAT instance can then be fed to a SAT solver. In this way we are able to improve the known bounds on the treewidth of several benchmark graphs from the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8(2), 277–284 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bachoore, E.H., Bodlaender, H.L.: New upper bound heuristics for treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. Technical Report UU-CS-2006-012, Department of Information and Computing Sciences, Utrecht University (2006)Google Scholar
  4. 4.
    Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Grigoriev, A., Arie, M.C., Koster, A.: Treewidth lower bounds with brambles. Algorithmica 51, 81–98 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. Journal of Graph Algorithms and Applications (JGAA) 10(1), 5–49 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    van den Broek, J.-W., Bodlaender, H.L.: TreewidthLIB (March 2009), http://people.cs.uu.nl/hansb/treewidthlib/
  8. 8.
    Clautiaux, F., Carlier, J., Moukrim, A., Nègre, S.: New lower and upper bounds for graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, ch. 5, pp. 193–242. Elsevier, Amsterdam (1990)Google Scholar
  10. 10.
    Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 7, pp. 209–244. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  11. 11.
    Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proc. of the 20th Conference on Uncertainty in Artificial Intelligence (UAI 2004). ACM International Conference Proceeding Series, vol. 70, pp. 201–208. AUAI Press (2004)Google Scholar
  12. 12.
    Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experiments. Electronic Notes in Discrete Mathematics 8, 54–57 (2001); Extended version available as Technical Report ZIB-Report 01-38, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marko Samer
    • 1
  • Helmut Veith
    • 1
  1. 1.Department of Computer ScienceTU DarmstadtGermany

Personalised recommendations