Finding Efficient Circuits Using SAT-Solvers

  • Arist Kojevnikov
  • Alexander S. Kulikov
  • Grigory Yaroslavtsev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5584)


In this paper we report preliminary results of experiments with finding efficient circuits (over binary bases) using SAT-solvers. We present upper bounds for functions with constant number of inputs as well as general upper bounds that were found automatically. We focus mainly on MOD-functions. Besides theoretical interest, these functions are also interesting from a practical point of view as they are the core of the residue number system. In particular, we present a circuit of size 3n + c over the full binary basis computing \({\rm MOD}_3^n\).


Boolean Function Truth Table Residue Number Circuit Complexity Residue Number System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chin, A.: On the depth complexity of the counting functions. Information Processing Letters 35, 325–328 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Eén, N.: Practical SAT — a tutorial on applied satisfiability solving. Slides of invited talk at FMCAD (2007)Google Scholar
  3. 3.
    Estrada, G.G.: A note on designing logical circuits using SAT. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 410–421. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Fischer, M.J., Meyer, A.R., Paterson, M.S.: Ω(n logn) lower bounds on length of Boolean formulas. SIAM Journal on Computing 11, 416–427 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fogel, D.B.: Evolutionary computation: The fossil record. IEEE Press, New York (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G., Resende, M.G.C.: An interior point approach to boolean vector function synthesis. In: Proceedings of the 36th International Midwest Symposium on Circuits and Systems (MSCAS 1993), pp. 185–189 (1993)Google Scholar
  7. 7.
    Khatri, S., Shenoy, N.: Logic synthesis. In: Scheffer, L., Lavagno, L., Martin, G. (eds.) Electronic Design Automation For Integrated Circuits Handbook. CRC Press, Taylor & Francis Group (2006)Google Scholar
  8. 8.
    Khrapchenko, V.M.: Complexity of the realization of a linear function in the case of Π-circuits. Math. Notes Acad. Sciences 9, 21–23 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Koren, I.: Computer Arithmetic Algorithms. Prentice Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  10. 10.
    Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal 38, 985–999 (1959)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Massey, J.L.: The difficulty with difficulty. In: A Guide to the Transparencies from the EUROCRYPT 1996 IACR Distinguished Lecture (1996)Google Scholar
  12. 12.
    McCluskey, E.J.: Logic Design Principles: with emphasis on testable semicustom circuits. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  13. 13.
    Nigmatullin, R.G.: Slognost’ bulevikh funktsii. Moskva, Nauka (1991) (in Russian)Google Scholar
  14. 14.
    Paterson, M.S., Zwick, U.: Shallow circuits and concise formulae for multiple addition and multiplication. Computational Complexity 3, 262–291 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Prasad, M.R., Biere, A., Aarti, G.: A survey of recent advances in SAT-based formal verification. International Journal on Software Tools for Technology Transfer 7(2), 156–173 (2005)CrossRefGoogle Scholar
  16. 16.
    Razborov, A.A.: Lower bounds for the monotone complexity of some Boolean functions. Soviet Math. Doklady 31, 354–357 (1985)zbMATHGoogle Scholar
  17. 17.
    Gelatt, C.D., Kirkpatrick, S., Vecchi, M.P.: Optimization by simulated annealing. Science, New Series 220(4598), 671–680 (1983)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Schnorr, C.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13, 155–171 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions. Mathematical Systems Theory 10, 323–336 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    van Leijenhorst, D.C.: A note on the formula size of the “mod k” functions. Information Processing Letters 24, 223–224 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Williams, R.: Applying practice to theory. ACM SIGACT News 39(4), 37–52 (2008)CrossRefGoogle Scholar
  22. 22.
    Zwick, U.: A 4n lower bound on the combinational complexity of certain symmetric boolean functions over the basis of unate dyadic Boolean functions. SIAM Journal on Computing 20, 499–505 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arist Kojevnikov
    • 1
  • Alexander S. Kulikov
    • 2
  • Grigory Yaroslavtsev
    • 3
  1. 1.OneSpin Solutions GmbHGermany
  2. 2.St. Petersburg Department of Steklov Institute of MathematicsRussia
  3. 3.Academic Physics and Technology University of the RASRussia

Personalised recommendations