Advertisement

Resolution and Expressiveness of Subclasses of Quantified Boolean Formulas and Circuits

  • Hans Kleine Büning
  • Xishun Zhao
  • Uwe Bubeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5584)

Abstract

We present an extension of Q-Unit resolution for formulas that are not completely in clausal form. This b-unit resolution is applied to different classes of quantified Boolean formulas in which the existential and universal variables satisfy the Horn property. These formulas are transformed into propositional equivalents consisting of only polynomially many subformulas. We obtain compact encodings as Boolean circuits and show that both representations have the same expressive power.

Keywords

Free Variable Truth Assignment Horn Clause Boolean Formula Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderaa, S., Börger, E.: The Equivalence of Horn and Network Complexity for Boolean Functions. Acta Informatica 15, 303–307 (1981)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bauer, M., Brand, D., Fischer, M., Meyer, A., Paterson, M.: A Note on Disjunctive Form Tautologies. SIGACT News 5(2), 17–20 (1973)CrossRefGoogle Scholar
  3. 3.
    Bubeck, U., Kleine Büning, H.: Models and Quantifier Elimination for Quantified Horn Formulas. Discrete Applied Mathematics 156(10), 1606–1622 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Flögel, A., Karpinski, M., Kleine Büning, H.: Subclasses of Quantified Boolean Formulas. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 145–155. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Flögel, A., Karpinski, M., Kleine Büning, H.: Resolution for Quantified Boolean Formulas. Information and Computation 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Karpinski, M., Kleine Büning, H., Schmitt, P.: On the computational complexity of quantified Horn clauses. In: CSL 1987. LNCS, vol. 329, pp. 129–137. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  7. 7.
    Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF Solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Sabharwal, A., Ansotegui, C., Gomes, C., Hart, J., Selman, B.: QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 382–395. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hans Kleine Büning
    • 1
  • Xishun Zhao
    • 2
  • Uwe Bubeck
    • 1
  1. 1.Universität PaderbornGermany
  2. 2.Sun Yat-sen University GuangzhouPR China

Personalised recommendations