Advertisement

Improving Variable Selection Process in Stochastic Local Search for Propositional Satisfiability

  • Anton Belov
  • Zbigniew Stachniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5584)

Abstract

This paper considers two methods for speeding-up stochastic local search SAT procedures. The first method aims at using the search history (represented by additional formulas derived at every state of the search process) to constrain the selection of candidate variables used to navigate through the search space of truth-value assignments. The second method uses the search history to allow multiple modifications of the current truth-value assignment in a single search step. Empirical studies of these two methods have demonstrated their effectiveness on structured and industrial SAT instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem-Proving. Communications of the ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ginsberg, M.L., McAllester, D.A.: GSAT and Dynamic Backtracking In. In: Proc. of KR 1994, pp. 226–237 (1994)Google Scholar
  3. 3.
    Grégoire, É., Ostrowski, R., Mazure, B., Saïs, L.: Automatic extraction of functional dependencies. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 122–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hirsch, E.A., Kojevnikov, A.: UnitWalk: A new SAT solver that uses local search guided by unit clause elimination. In: Annals of Mathematics and Artificial Intelligence, pp. 91–111 (2005)Google Scholar
  5. 5.
    Hoos, H.H., Stutzle, T.: Stochastic Local Search Foundations and Applications. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  6. 6.
    Hoos, H.H., Stutzle, T.: Local Search Algorithms for SAT: An Empirical Evaluation. J. of Automated Reasoning, 421–481 (2000)Google Scholar
  7. 7.
    Hoos, H.H.: An adaptive noise mechanism for walkSAT. In: Proc. of AAAI 2002, pp. 655–660 (2002)Google Scholar
  8. 8.
    Jussien, N., Lhomme, O.: Local Search with Constraint Propagation and Conflict-Based Heuristics. In: Proc. of AAAI 2000, pp. 169–174 (2000)Google Scholar
  9. 9.
    Lynce, I., Marques-Silva, J.P.: An Overview of Backtrack Search Satisfiability Algorithms. In: Annals of Mathematics and Artificial Intelligence, pp. 307–326 (2003)Google Scholar
  10. 10.
    Richards, E.T., Richards, B.: Nonsystematic Search and No-Good Learning. In: Journal of Automated Reasoning, pp. 483–533 (2000)Google Scholar
  11. 11.
    Selman, B., Kautz, H., Cohen, B.: Noise Strategies for Local Search. In: Proc. of AAAI 1994, pp. 337–343 (1994)Google Scholar
  12. 12.
    Stachniak, Z., Belov, A.: Speeding-up Non-Clausal Local Search for Propositional Satisfiability with Clause Learning. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 257–270. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Tompkins, D.A.D., Hoos, H.: UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Yokoo, M.: Weak-commitment Search for Solving Constraint Satisfaction Problems. In: Proc. of AAAI 1994, pp. 313–318 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anton Belov
    • 1
  • Zbigniew Stachniak
    • 1
  1. 1.Department of Computer Science and EngineeringYork UniversityTorontoCanada

Personalised recommendations