Advertisement

Abstract

Minimizing learned clauses is an effective technique to reduce memory usage and also speed up solving time. It has been implemented in MiniSat since 2005 and is now adopted by most modern SAT solvers in academia, even though it has not been described in the literature properly yet. With this paper we intend to close this gap and also provide a thorough experimental analysis of it’s effectiveness for the first time.

Keywords

Decision Level Antecedent Clause Implication Graph Assignment Order Binary Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Sais, L.: A generalized framework for conflict analysis. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 21–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22 (2004)Google Scholar
  3. 3.
    Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 4 (2008)Google Scholar
  4. 4.
    Dershowitz, N., Hanna, Z., Nadel, A.: Towards a better understanding of the functionality of a conflict-driven SAT solver. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 287–293. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Jin, H.S., Somenzi, F.: Strong conflict analysis for propositional satisfiability. In: Proc. DATE 2006 (2006)Google Scholar
  8. 8.
    Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability, IOS Press, Amsterdam (2009)Google Scholar
  9. 9.
    Marques-Silva, J., Sakallah, K.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. on Computers 48(5) (1999)Google Scholar
  10. 10.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. DAC 2001 (2001)Google Scholar
  11. 11.
    Nadel, A.: Understanding and Improving a Modern SAT Solver. PhD thesis, Tel Aviv University (submitted, 2008)Google Scholar
  12. 12.
    Pilarski, S., Hu, G.: Speeding up SAT for EDA. In: Proc. DATE 2002 (2002)Google Scholar
  13. 13.
    Pipatsrisawat, K., Darwiche, A.: A new clause learning scheme for efficient unsatisfiability proofs. In: Proc. AAAI 2008 (2008)Google Scholar
  14. 14.
    Sinz, C.: SAT-Race 2008 (2008), http://baldur.iti.uka.de/sat-race-2008
  15. 15.
    Sörensson, N., Eén, N.: MS 2.1 and MS++ 1.0, SAT Race 2008 edn. (2008)Google Scholar
  16. 16.
    Sörensson, N., Eén, N.: MiniSat v1.13 – A SAT solver with conflict-clause minimization (2005)Google Scholar
  17. 17.
    Urquhart, A.: The complexity of propositional proofs. Bull. of EATCS 64 (1998)Google Scholar
  18. 18.
    Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: Proc. ICCAD 2001 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Niklas Sörensson
    • 1
  • Armin Biere
    • 2
  1. 1.Chalmers University of TechnologyGöteborgSweden
  2. 2.Johannes Kepler UniversityLinzAustria

Personalised recommendations