A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata

  • Marie-Pierre Béal
  • Dominique Perrin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5583)


Černý’s conjecture asserts the existence of a synchronizing word of length at most (n − 1)2 for any synchronized n-state deterministic automaton. We prove a quadratic upper bound on the length of a synchronizing word for any synchronized n-state deterministic automaton satisfying the following additional property: there is a letter a such that for any pair of states p,q, one has p ·a r  = q ·a s for some integers r,s (for a state p and a word w, we denote by p ·w the state reached from p by the path labeled w). As a consequence, we show that for any finite synchronized prefix code with an n-state decoder, there is a synchronizing word of length O(n 2). This applies in particular to Huffman codes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béal, M.-P.: A note on Černý’s conjecture and rational series. preprint IGM 2003-05 (unpublished, 2003)Google Scholar
  2. 2.
    Béal, M.-P., Perrin, D.: A quadratic algorithm for road coloring. CoRR, abs/0803.0726 (2008)Google Scholar
  3. 3.
    Biskup, M.T.: Shortest synchronizing strings for huffman codes. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 120–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Carpi, A., D’Alessandro, F.: The synchronization problem for strongly transitive automata. In: Developments in Language Theory, pp. 240–251 (2008)Google Scholar
  5. 5.
    Černý, J., Poznámka, K.: Homogénnym experimentom s konecnými automatmi. Mat. fyz. čas SAV 14, 208–215 (1964)Google Scholar
  6. 6.
    Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform. Théor. Appl. 32, 21–34 (1998)MathSciNetGoogle Scholar
  7. 7.
    Eilenberg, S.: Automata, languages, and machines, vol. A. Academic Press, A subsidiary of Harcourt Brace Jovanovich, Publishers, New York (1974); Pure and Applied Mathematics, vol. 58MATHGoogle Scholar
  8. 8.
    Freiling, C.F., Jungreis, D.S., Théberge, F., Zeger, K.: Almost all complete binary prefix codes have a self-synchronizing string. IEEE Transactions on Information Theory 49, 2219–2225 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kari, J.: A counter example to a conjecture concerning synchronizing words in finite automata. EATCS Bulletin 73, 146 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Kari, J.: Synchronizing finite automata on eulerian digraphs. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 432–438. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Perrin, D., Schützenberger, M.-P.: Synchronizing words and automata and the road coloring problem, in Symbolic Dynamics and its Applications. In: Walters, P. (ed.) American Mathematical Society, vol. 135, pp. 295–318. Contemporary Mathematics (1992)Google Scholar
  12. 12.
    Pin, J.-E.: Le problème de la synchronisation et la conjecture de Černý, thèse de 3ème cycle, Université Paris VI (1978)Google Scholar
  13. 13.
    Pin, J.-E.: Sur un cas particulier de la conjecture de Černý. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, Springer, Heidelberg (1978)Google Scholar
  14. 14.
    Pin, J.-E.: On two combinatorial problems arising from automata theory. Annals of Discrete Mathematics, vol. 17, pp. 535–548 (1983)Google Scholar
  15. 15.
    Sakarovitch, J.: Éléments de théorie des automates, Éditions Vuibert (2003)Google Scholar
  16. 16.
    Schützenberger, M.-P.: On synchronizing prefix codes. Inform. and Control 11, 396–401 (1967)CrossRefMATHGoogle Scholar
  17. 17.
    Trahtman, A.N.: Synchronization of some DFA. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 234–243. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Trahtman, A.N.: The road coloring problem. Israel J. Math (to appear) (2008)Google Scholar
  19. 19.
    Trakhtman, A.: Some aspects of synchronization of DFA. J. Comput. Sci. Technol. 23, 719–727 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 27–37. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Volkov, M.V.: Synchronizing automata and the Černy conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marie-Pierre Béal
    • 1
  • Dominique Perrin
    • 1
  1. 1.Université Paris-Est, LIGM CNRSMarne-la-Vallée Cedex 2France

Personalised recommendations