Branching-Time Temporal Logics with Minimal Model Quantifiers

  • Fabio Mogavero
  • Aniello Murano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5583)


Temporal logics are a well investigated formalism for the specification and verification of reactive systems. Using formal verification techniques, we can ensure the correctness of a system with respect to its desired behavior (specification), by verifying whether a model of the system satisfies a temporal logic formula modeling the specification.

From a practical point of view, a very challenging issue in using temporal logic in formal verification is to come out with techniques that automatically allow to select small critical parts of the system to be successively verified. Another challenging issue is to extend the expressiveness of classical temporal logics, in order to model more complex specifications.

In this paper, we address both issues by extending the classical branching-time temporal logic Ctl* with minimal model quantifiers (MCtl*). These quantifiers allow to extract, from a model, minimal submodels on which we check the specification (also given by an MCtl* formula).We show that MCtl* is strictly more expressive than Ctl*. Nevertheless, we prove that the model checking problem for MCtl. remains decidable and in particular in PSpace. Moreover, differently from Ctl*, we show that MCtl* does not have the tree model property, is not bisimulation-invariant and is sensible to unwinding. As far as the satisfiability concerns, we prove that MCtl* is highly undecidable. We further investigate the model checking and satisfiability problems for MCtl* sublogics, such as MPml, MCtl, and MCtl+, for which we obtain interesting results. Among the others, we show that MPml retains the finite model property and the decidability of the satisfiability problem.


Model Check Minimal Model Temporal Logic Atomic Proposition Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHK02]
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. JACM 49(5), 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AL93]
    Abadi, M., Lamport, L.: Composing Specifications. TOPLAS 15(1), 73–132 (1993)CrossRefGoogle Scholar
  3. [BdRV04]
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  4. [Ber66]
    Berger, R.: The Undecidability of the Domino Problem. MAMS 66, 1–72 (1966)MathSciNetzbMATHGoogle Scholar
  5. [BLMV06]
    Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The Complexity of Enriched μ-Calculi. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 540–551. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. [BMM09]
    Bianco, A., Mogavero, F., Murano, A.: Graded Computation Tree Logic. In: LICS 2009 (to appear, 2009)Google Scholar
  7. [BS99]
    Baader, F., Sattler, U.: Expressive Number Restrictions in Description Logics. JLC 9(3), 319–350 (1999)MathSciNetzbMATHGoogle Scholar
  8. [CE81]
    Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  9. [ECJB97]
    Elseaidy, W.M., Cleaveland, R., Baugh Jr., J.W.: Modeling and Verifying Active Structural Control Systems. SCP 29(1-2), 99–122 (1997)Google Scholar
  10. [EH85]
    Emerson, E.A., Halpern, J.Y.: Decision Procedures and Expressiveness in the Temporal Logic of Branching Time. JCSS 30(1), 1–24 (1985)MathSciNetzbMATHGoogle Scholar
  11. [Eme90]
    Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer Science, Formal Models and Sematics (B), vol. B, pp. 995–1072 (1990)Google Scholar
  12. [FvD08]
    French, T., van Ditmarsch, H.P.: Undecidability for Arbitrary Public Announcement Logic. In: AIML, pp. 23–42 (2008)Google Scholar
  13. [Har84]
    Harel, D.: A Simple Highly Undecidable Domino Problem. In: CLC 1984(1984)Google Scholar
  14. [Knu68]
    Knuth, D.E.: The Art of Computer Programming, Fundamental Algorithms, vol. I. Addison-Wesley, Reading (1968)zbMATHGoogle Scholar
  15. [Kur94]
    Kurshan, R.P.: The Complexity of Verification. In: STOC 1994, pp. 365–371 (1994)Google Scholar
  16. [KV95]
    Kupferman, O., Vardi, M.Y.: On the Complexity of Branching Modular Model Checking. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 408–422. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. [KV97]
    Kupferman, O., Vardi, M.Y.: Modular Model Checking. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 381–401. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. [KVW00]
    Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Branching-Time Model Checking. JACM 47(2), 312–360 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Lam80]
    Lamport, L.: “Sometime” is Sometimes “Not Never”: On the Temporal Logic of Programs. In: POPL 1980, pp. 174–185 (1980)Google Scholar
  20. [LMS01]
    Laroussinie, F., Markey, N., Schnoebelen, P.: Model Checking CTL+ and FCTL is Hard. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 318–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. [LR03]
    Löding, C., Rohde, P.: Model Checking and Satisfiability for Sabotage Modal Logic.. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 302–313. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. [Pel96]
    Peled, D.: Combining Partial Order Reductions with On-the-Fly Model Checking.. FMSD 8(1), 39–64 (1996)Google Scholar
  23. [Pnu77]
    Pnueli, A.: The Temporal Logic of Programs.. In: FOCS 1977, pp. 46–57 (1977)Google Scholar
  24. [Pnu81]
    Pnueli, A.: The Temporal Semantics of Concurrent Programs. TCS 13, 45–60 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [QS82]
    Queille, J.-P., Sifakis, J.: Specification and Verification of Concurrent Systems in CESAR. In: CISP 1982, pp. 337–351. Springer, Heidelberg (1982)Google Scholar
  26. [Rob71]
    Robinson, R.M.: Undecidability and Nonperiodicity for Tilings of the Plane. IM 12, 177–209 (1971)MathSciNetzbMATHGoogle Scholar
  27. [Wan61]
    Wang, H.: Proving Theorems by Pattern Recognition II. BSTJ 40, 1–41 (1961)Google Scholar
  28. [Wil99]
    Wilke, T.: CTL+ is Exponentially More Succinct than CTL. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 110–121. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fabio Mogavero
    • 1
  • Aniello Murano
    • 1
  1. 1.Universitá degli Studi di Napoli ”Federico II”NapoliItaly

Personalised recommendations