Advertisement

Subshifts, Languages and Logic

  • Emmanuel Jeandel
  • Guillaume Theyssier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5583)

Abstract

We study the Monadic Second Order (MSO) Hierarchy over infinite pictures, that is tilings. We give a characterization of existential MSO in terms of tilings and projections of tilings. Conversely, we characterise logic fragments corresponding to various classes of infinite pictures (subshifts of finite type, sofic subshifts).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenbernd, J.-H., Thomas, W., Wohrle, S.: Tiling systems over infinite pictures and their acceptance conditions. In: Developments in Language Theory (2003)Google Scholar
  2. 2.
    Ballier, A., Jeandel, E.: Tilings and model theory. In: First Symposium on Cellular Automata Journées Automates Cellulaires (2008)Google Scholar
  3. 3.
    Berger, R.: The undecidability of the domino problem. Memoirs American Mathematical Society 66, 1966 (1966)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer Monographs in Mathematics. Springer, Berlin (1995)zbMATHGoogle Scholar
  5. 5.
    Börger, Y.G.E., Grädel, E.: The classical decision problem. Springer, Telos (1996)zbMATHGoogle Scholar
  6. 6.
    Giammarresi, D., Restivo, A.: Two-Dimensional Languages. In: Handbook of Formal Languages, Beyond Words, vol. 3. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic Second-Order Logic over Rectangular Pictures and Recognizability by Tiling Systems. Information and Computation 125, 32–45 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hanf, W.: Model-theoretic methods in the study of elementary logic. In: Symposium in the Theory of Models, pp. 132–145 (1965)Google Scholar
  9. 9.
    Harel, D.: Recurring Dominoes: Making the Highly Undecidable Highly Understandable. Annals of Discrete Mathematics 24, 51–72 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kuske, D., Lohrey, M.: Logical aspects of Cayley-graphs: the group case. Annals of Pure and Applied Logic 131(1-3), 263–286 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Science, an EATCS Series. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Makowsky, J.A.: On some conjectures connected with complete sentences. Fund. Math. 81, 193–202 (1974)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Matz, O., Schweikardt, N.: Expressive power of monadic logics on words, trees, pictures, and graphs. In: Gradel, E., Flum, J., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 531–552. Amsterdam University Press (2007)Google Scholar
  14. 14.
    Oger, F.: Algebraic and model-theoretic properties of tilings. Theoretical computer science 319, 103–126 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Poizat, B.: Une théorie finiement axiomatisable et superstable. Groupe d’étude des théories stables 3(1), 1–9 (1980-1882)zbMATHGoogle Scholar
  16. 16.
    Robinson, R.M.: Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones Math. 12 (1971)Google Scholar
  17. 17.
    Schwentick, T., Barthelmann, K.: Local Normal Forms for First-Order Logic with Applications to Games and Automata. Discrete Mathematics and Theoretical Computer Science 3, 109–124 (1999)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Seese, D.: The structure of the models of decidable monadic theories of graphs. Annals of pure and applied logic 53(2), 169–195 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Thomas, W.: On logics, tilings, and automata. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–454. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  20. 20.
    Thomas, W.: Languages, Automata, and Logic. In: Thomas, W. (ed.) Handbook of Formal Languages, Beyond Words, vol. 3. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Wang, H.: Proving theorems by pattern recognition ii. Bell system technical journal 40, 1–41 (1961)CrossRefGoogle Scholar
  22. 22.
    Weiss, B.: Subshifts of finite type and sofic systems. Monatshefte für Mathematik 77, 462–474 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Emmanuel Jeandel
    • 1
  • Guillaume Theyssier
    • 2
  1. 1.Laboratoire d’informatique fondamentale de Marseille (LIF)Aix-Marseille Université, CNRSMarseille Cedex 13France
  2. 2.LAMA (Université de Savoie, CNRS)Le Bourget-du-lac cedexFrance

Personalised recommendations