Advertisement

Revisiting Satisfiability and Model-Checking for CTLK with Synchrony and Perfect Recall

  • Cătălin Dima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5405)

Abstract

We show that CTL with knowledge modalities but without common knowledge has an undecidable satisfiability problem in the synchronous perfect recall semantics. We also present an adaptation of the classical model-checking algorithm for CTL that handles knowledge operators.

Keywords

Turing Machine Linear Temporal Logic Atomic Proposition Knowledge Operator Input Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CES86]
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions of Programming Languages and Systems 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  2. [DW99]
    Dickhöfer, M., Wilke, T.: Timed alternating tree automata: The automata-theoretic solution to the TCTL model checking problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 281–290. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. [EKM98]
    Elgaard, J., Klarlund, N., Møller, A.: Mona 1.x: New techniques for ws1s and ws2s. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. [ER66]
    Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. Journal of Symbolic Logic 31(2), 169–181 (1966)CrossRefzbMATHGoogle Scholar
  5. [FHV04]
    Fagin, R., Halpern, J., Vardi, M.: Reasoning about knowledge. The MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  6. [HV86]
    Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time: Extended abstract. In: Proceedings of STOC 1986, pp. 304–315 (1986), https://www.cs.rice.edu/~vardi/papers/stoc86r1.pdf.gz
  7. [HV89]
    Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time. I. Lower bounds. Journal of Computer System Sciences 38(1), 195–237 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [KLN+06]
    Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., Szreter, M.: Comparing BDD and SAT based techniques for model checking Chaum’s Dining Cryptographers Protocol. Fundamenta Informaticae 72(1-3), 215–234 (2006)MathSciNetzbMATHGoogle Scholar
  9. [LM95]
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  10. [LR06]
    Lomuscio, A., Raimondi, F.: The complexity of model checking concurrent programs against CTLK specifications. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS, vol. 4327, pp. 29–42. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. [RL05]
    Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via ordered binary decision diagrams. Journal of Applied Logic 5(2), 235–251 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [SG02]
    Shilov, N.V., Garanina, N.O.: Model checking knowledge and fixpoints. In: Proceedings of FICS 2002, Extended version available as Preprint 98, pp. 25–39. Ershov Institute of Informatics, Novosibirsk (2002)Google Scholar
  13. [Tho92]
    Thomas, W.: Infinite trees and automaton-definable relations over ω-words. Theoretical Computer Science 103(1), 143–159 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [vBP06]
    van Benthem, J., Pacuit, E.: The tree of knowledge in action: Towards a common perspective. In: Governatori, G., Hodkinson, I.M., Venema, Y. (eds.) Proceedings of AiML 2006, pp. 87–106. College Publications (2006)Google Scholar
  15. [vdM98]
    van der Meyden, R.: Common knowledge and update in finite environments. Information and Computation 140(2), 115–157 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [vdMS99]
    van der Meyden, R., Shilov, N.V.: Model checking knowledge and time in systems with perfect recall (extended abstract). In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 432–445. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. [vdMS04]
    van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining cryptographers. In: Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW-17 2004), p. 280. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cătălin Dima
    • 1
  1. 1.LACL, Université Paris Est – Université Paris 12CréteilFrance

Personalised recommendations