Tableaux for Projection Computation and Knowledge Compilation

  • Christoph Wernhard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5607)


Projection computation is a generalization of second-order quantifier elimination, which in turn is closely related to the computation of forgetting and of uniform interpolants. On the basis of a unified view on projection computation and knowledge compilation, we develop a framework for applying tableau methods to these tasks. It takes refinements from performance oriented systems into account. Formula simplifications are incorporated at the level of tableau structure modification, and at the level of simplifying encountered subformulas that are not yet fully compiled. In particular, such simplifications can involve projection computation, where this is possible with low cost. We represent tableau construction by means of rewrite rules on formulas, extended with some auxiliary functors, which is particularly convenient for formula transformation tasks. As instantiations of the framework, we discuss approaches to propositional knowledge compilation from the literature, including adaptions of DPLL, and the hyper tableau calculus for first-order clauses.


Leaf Node Ground Atom Projection Computation Input Formula Projection Scope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS(LNAI), vol. 1126, pp. 1–17. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Bayardo, R.J., Pehoushek, J.D.: Counting models using connected components. In: AAAI-2000, pp. 157–162 (2000)Google Scholar
  3. 3.
    Bry, F., Yahya, A.H.: Positive unit hyperresolution tableaux and their application to minimal model generation. J. Autom. Reason. 25(1), 35–82 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Darwiche, A.: Decomposable negation normal form. JACM 48(4), 608–647 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Darwiche, A.: New advances in compiling CNF to decomposable negation normal form. In: ECAI 2004, pp. 328–332 (2004)Google Scholar
  6. 6.
    Darwiche, A., Marquis, P.: A knowledge compilation map. JAIR 17, 229–264 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Automated Reasoning, vol. I, ch. 1, pp. 537–610. Elsevier Science, Amsterdam (2001)Google Scholar
  8. 8.
    Ebbinghaus, H.-D., Flum, J., Thomas, W.: Einführung in die mathematische Logik, 4th edn. Spektrum Akademischer Verlag, Heidelberg (1996)Google Scholar
  9. 9.
    Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications. College Publications (2008)Google Scholar
  10. 10.
    Hähnle, R., Murray, N.V., Rosenthal, E.: Normal forms for knowledge compilation. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS, vol. 3488, pp. 304–313. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation. In: IJCAI 2005, pp. 156–162 (2005)Google Scholar
  12. 12.
    Kohlas, J., Haenni, R., Moral, S.: Propositional information systems. J. Logic and Comp. 9(5), 651–681 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lang, J., Liberatore, P., Marquis, P.: Propositional independence – formula-variable independence and forgetting. JAIR 18, 391–443 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Murray, N.V., Rosenthal, E.: Dissolution: Making paths vanish. JACM 40(3), 504–535 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Murray, N.V., Rosenthal, E.: Tableaux, path dissolution and decomposable negation normal form for knowledge compilation. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 165–180. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). JACM 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wernhard, C.: Semantic knowledge partitioning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 552–564. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Wernhard, C.: Literal projection for first-order logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 389–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Wernhard, C.: Automated Deduction for Projection Elimination. Dissertationen zur Künstlichen Intelligenz (DISKI), vol. 324. AKA/IOS Press (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christoph Wernhard
    • 1
  1. 1.Technische Universität Dresden 

Personalised recommendations