Proof Search and Counter-Model Construction for Bi-intuitionistic Propositional Logic with Labelled Sequents

  • Luís Pinto
  • Tarmo Uustalu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5607)

Abstract

Bi-intuitionistic logic is a conservative extension of intuitionistic logic with a connective dual to implication, called exclusion. We present a sound and complete cut-free labelled sequent calculus for bi-intuitionistic propositional logic, BiInt, following S. Negri’s general method for devising sequent calculi for normal modal logics. Although it arises as a natural formalization of the Kripke semantics, it is does not directly support proof search. To describe a proof search procedure, we develop a more algorithmic version that also allows for counter-model extraction from a failed proof attempt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buisman (Postniece), L., Goré, R.: A cut-free sequent calculus for bi-intuitionistic logic. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS, vol. 4548, pp. 90–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Crolard, T.: Subtractive logic. Theor. Comput. Sci. 254(1–2), 151–185 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Curien, P.-L., Herbelin, U.: The duality of computation. In: Proc. of 5th Int. Conf. on Functional Programming, ICFP 2000, Montreal, September 2000, pp. 233–243. ACM Press, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. of Symb. Logic 57(3), 795–807 (1992)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Filinski, A.: Declarative continuations: An investigation of duality in programming language semantics. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 224–249. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  6. 6.
    Goré, R.: Dual intuitionistic logic revisited. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 252–267. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Goré, R., Postniece, L.: Combining derivations and refutations for cut-free completeness in bi-intuitionistic logic. J. of Logic and Comput. (to appear)Google Scholar
  8. 8.
    Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic 7, pp. 43–66. College Publications, London (2008)Google Scholar
  9. 9.
    Łukowski, P.: Modal interpretation of Heyting-Brouwer logic. Bull. of Sect. of Logic 25, 80–83 (1996)MATHGoogle Scholar
  10. 10.
    Mints, G.: Gentzen-type systems and resolution rules, part 1: Propositional logic. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Monteiro, C.: Caracterizações semânticas e dedutivas da lógica bi-intuitionista. Master’s thesis. Universidade de Trás-os-Montes e Alto-Douro (2006)Google Scholar
  12. 12.
    Negri, S.: Proof analysis in modal logic. J. of Philos. Logic 34(5–6), 507–544 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic propositional logic. In: Behara, M., Fritsch, R., Lintz, R.G. (eds.) Proc. of 2nd Gauss Symp., Munich, August 1993, pp. 225–232. Conf. A. Walter de Gruyter, Berlin (1995)Google Scholar
  14. 14.
    Rauszer, C.: Semi-boolean algebras and their applications to intuitionistic logic with dual operators. Fund. Math. 83, 219–249 (1974)MATHMathSciNetGoogle Scholar
  15. 15.
    Rauszer, C.: A formalization of the propositional calculus of H-B logic. Studia Logica 33(1), 23–34 (1974)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rauszer, C.: Applications of Kripke models to Heyting-Brouwer logic. Studia Logica 36(1–2), 61–71 (1977)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Restall, G.: Extending intuitionistic logic with subtraction (unpublished note, 1997), http://consequently.org/writing/extendingj/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luís Pinto
    • 1
  • Tarmo Uustalu
    • 2
  1. 1.Centro de MatemáticaUniversidade do MinhoBragaPortugal
  2. 2.Institute of Cybernetics at Tallinn University of TechnologyTallinnEstonia

Personalised recommendations