Identifying Proper Scales on Digital Maps for In-Vehicle Navigation Systems

  • Anna Wu
  • Xiaolong Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5616)

Abstract

Current commercial mobile navigation systems often use a pre-determined scale selection schema without considering differences in spatial complexity of locations. To identify what map scales people may need and what spatial features make relevant maps stand out, we conducted an experiment on subjective map selection in a route planning task between two cities in the United States. Our results suggest that the distribution of selected maps is fairly concentrated on those maps that contain spatial information about both the origin and the destination, the current location and the destination, and the transition between different important roads in a route. These results suggest that the choice of map scales should not follow a preset scale rule for diverse locations, and instead, it should be adaptive to the complexity of local roads and decision-making processes.

Keywords

Map scale mobile interface design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berg Insight: GPS-enabled handset shipments to reach 560 million units in 2012, http://www.intomobile.com/2008/01/15/berg-insight-gps-enabled-handset-shipments-to-reach-560-million-units-in-2012.html
  2. 2.
    Meng, L.: Missing Theories and Methods in Digital Cartography. In: 21st International Cartographic Conference (2003)Google Scholar
  3. 3.
    Dillemuth, J., et al.: Choosing the Scale and Extent of Maps for Navigation with Mobile Computing Systems. Journal of Location Based Services 1(1), 46–61 (2007)CrossRefGoogle Scholar
  4. 4.
    Töpfer, F., Pillewizer, W.: The Principles of Selection, A Means of Cartographic Generalization. The Cartographic Journal 3(1), 10–16 (1966)CrossRefGoogle Scholar
  5. 5.
    Tufte, E.R., Schmieg, G.M.: The Visual Display of Quantitative Information. American Journal of Physics 53, 1117–1118 (1985)CrossRefGoogle Scholar
  6. 6.
    Woodruff, A., et al.: Constant Information Density in Zoomable Interfaces. In: Proceedings of the working conference on Advanced visual interfaces, pp. 57–65. ACM, New York (1998)Google Scholar
  7. 7.
    Brooks, A.: Map Design: a Simulator Evaluation of the Factors Affecting the Time to Read Electronic Navigation Displays. UMTRI-98-7, University of Michigan, Ann Arbor, ITS Research Center of Excellence (1998)Google Scholar
  8. 8.
    Weiser, M.: Hot Topics-Ubiquitous Computing. Computer 26(10), 71–72 (1993)CrossRefGoogle Scholar
  9. 9.
    Danado, J., et al.: Mobile Environmental Visualization. Cartographic Journal 42, 61–68 (2005)CrossRefGoogle Scholar
  10. 10.
    Edwardes, A., et al.: Portrayal and Generalisation of Point Maps for Mobile Information Services. In: Meng, L., Zipf, A., Reichenbacher, T. (eds.) Map-based Mobile Services: Theories, Methods and Implementations (2005)Google Scholar
  11. 11.
    Dillemuth, J.: Map Design Evaluation for Mobile Display. Cartography and Geographic Information Science 32, 285–301 (2005)CrossRefGoogle Scholar
  12. 12.
    Meilinger, T., et al.: How Much Information Do You Need? Schematic Maps in Wayfinding and Self Localisation. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS, vol. 4387, pp. 381–400. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Klippel, A., et al.: The Cognitive Reality of Schematic Maps. In: Meng, L., Zipf, A., Reichenbacher, T. (eds.) Map-Based Mobile Services: Theories, Methods and Implementations. Springer, Berlin (2005)Google Scholar
  14. 14.
  15. 15.
    Wiener, J.M., Mallot, H.A.: ‘Fine-to-Coarse’ Route Planning and Navigation in Regionalized Environments. Spatial Cognition & Computation 3(4), 331–358 (2003)CrossRefGoogle Scholar
  16. 16.
    Chown, E., et al.: Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping. Cognitive Science 19(1), 1–51 (1995)CrossRefGoogle Scholar
  17. 17.
    Tverksy, B.: Levels and structure of spatial knowledge. In: Kitchin, R., Freundschuh, S. (eds.) Cognitive Mapping: Past, Present and Future. Routledge, London (2000)Google Scholar
  18. 18.
    Rauschenbach, U.: The Rectangular Fisheye View as an Efficient Method for the Transmission and Display of Large Images. In: Proceedings of International Conference on Image Processing, pp. 115–119. IEEE, Los Alamitos (1999)Google Scholar
  19. 19.
    Harrie, L., et al.: A Variable-Scale Map for Small-Display Cartography. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34(4), 237–242 (2002)Google Scholar
  20. 20.
    Rappo, A.: Fischaugenprojektionen mit distanzabhängiger Informationsdichte für die kartographische Visualisierung auf kleinen Bildschirmen. Universität Zürich, Cited from Reichenbacher, T. (2004). Mobile Cartography –Adaptive Visualisation of Geographic Information on Mobile Devices. Doctoral Thesis, Technical University of Munich (2003)Google Scholar
  21. 21.
    Ekstrom, R.B., et al.: Kit of Reference Tests for Cognitive Factors. Educational Testing Services, Princeton (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anna Wu
    • 1
  • Xiaolong Zhang
    • 1
  1. 1.College of Information Science & TechnologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations