Advertisement

Workflow Mining Application to Ambient Intelligence Behavior Modeling

  • Carlos Fernández
  • Juan Pablo Lázaro
  • Jose Miguel Benedí
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5615)

Abstract

The handmade human behavior modeling requires too many human resources and for too long a time. In addition, the final result does probably not reflect the current status of the person due to the influence of time. The use on Workflow Mining techniques to infer human behavior models from past executions of actions can be a solution to this problem. In this paper, a Human Behavior modeling methodology based on Workflow Mining Techniques is proposed.

Keywords

Human Behavior Ambient Intelligence Automaton Learning Human Behavior Model Ambient Intelligence System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer, L. (ed.): Workflow Handbook 2001, Workflow Management Coalition. FutureStrategies. Lighthouse Point, Florida (2001)Google Scholar
  2. 2.
    WfMC. Workflow Management Coalition Terminology Glossary. WFMCTC-1011, Document Status Issue 3.0 (1999)Google Scholar
  3. 3.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and aproaches. Data and Knowledge Engineering 47, 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W., et al.: Workflow Patterns Distributed and Parallel Databases, p. 70 (2003)Google Scholar
  5. 5.
    van der Aalst, W., et al.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16, 1128–1142 (2004)CrossRefGoogle Scholar
  6. 6.
    de Medeiros, A.K.A., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: Genetic process mining: A basic approach and its challenges. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 203–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Fernandez, C., Benedi, J.M.: Activity-Based Workflow Mining: A Theoretical framework Workshop On Technologies for Healthcare and Healthy Lifestyle (2006) ISBN:978- 84-611-1311-8Google Scholar
  8. 8.
    Fernandez, C., Benedí, J.M.: Timed parallel automaton learning in workflow mining problems. In: Ciencia y Tecnología en la Frontera (2008) ISSN:1665-9775Google Scholar
  9. 9.
    Schalkoff, R.J.: Pattern recognition: statistical, structural and neural approaches. John Wiley & Sons, Inc., Chichester (1991)Google Scholar
  10. 10.
    Oncina, J., Garcia, P., Vidal, E.: Learning subsequential transducers for pattern recognition interpretation tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 448–458 (1993)Google Scholar
  11. 11.
    Oncina, J., García, P.: Inferring regular languages in polynomial update time. In: Pattern Recognition and Image Analysis 1991. World Scientific Publishing, Singapore (1991)Google Scholar
  12. 12.
    Coste, F.: State merging inference of innite state classifiers. In: Rapport technique n INRIA/RR-3695, IRISA (September 1999)Google Scholar
  13. 13.
    Dominguez, D., Fernandez, C., Meneu, T., Mocholi, J.B., Serafin, R.: Medical guidelines for the patient: Introducing the life assistance protocols. In: Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, vol. 139, p. 282. IOS Press, Amsterdam (2008)Google Scholar
  14. 14.
    Fernandez, C., Sanchez, C., Traver, V., Benedí, J.M.: TPAEngine: Un motor de workflows basado en TPA. In: Ciencia y Tecnología en la Frontera (2008) ISSN:1665-9775Google Scholar
  15. 15.
    Santacruz, K., Swagerty, D.: Early Diagnosis of Dementia American Family Physician 63(4) (February 2001)Google Scholar
  16. 16.
    Weiser, M.: Some Computer Science Issues in Ubiquitous Computing. CACM 36(7), 74–84 (1993)CrossRefGoogle Scholar
  17. 17.
    PERSONA Consortium. PERSONA project: PERceptive Spaces promOting iNdependent Aging, http://www.aal-persona.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlos Fernández
    • 1
  • Juan Pablo Lázaro
    • 1
  • Jose Miguel Benedí
    • 2
  1. 1.Research Group of technologies for Health and Wellbeing (TSB), ITACA InstitutePolytechnic University of ValenciaSpain
  2. 2.Department of information Systems and Computation (DSIC)Polytechnic University of ValenciaSpain

Personalised recommendations