Derivation and Refinement of Textual Syntax for Models

  • Florian Heidenreich
  • Jendrik Johannes
  • Sven Karol
  • Mirko Seifert
  • Christian Wende
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5562)


Textual Syntax (TS) as a form of model representation has made its way to the Model-Driven Software Development community and is considered a viable alternative to graphical representations. To support the design and implementation of text editing facilities many concrete syntax and model mapping tools have emerged. Despite the maturity of these tools, users still spend considerable effort to specify syntaxes and generate editors even for simple metamodels. To reduce this effort, we propose to refine a specification that is automatically derived from a given metamodel. We argue that defaults in a customisable setting enable developers to quickly realise text-based editors for models. In particular in settings where metamodels evolve, such a procedure is beneficial. To evaluate this idea we present EMFText [1], an EMF/Eclipse integrated tool for agile Textual Syntax (TS) development. We show how default syntax can easily be tailored and refined to obtain a custom text editor for EMF models and demonstrate our approach by two examples.


Modelling Language Concrete Syntax Eclipse Modelling Framework Syntax Rule Code Completion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    TU Dresden: Software Technology Group: EMFText (2008),
  2. 2.
    Object Management Group: Human Usable Textual Notation (HUTN) Specification. Final Adopted Specification ptc/02-12-01 (2002)Google Scholar
  3. 3.
    Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Framework, 2nd edn. Pearson Education, London (2008)Google Scholar
  4. 4.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers – Principles, Techniques, and Tools. Addison-Wesley, Reading (1986)zbMATHGoogle Scholar
  5. 5.
    Meyer, B.: Introduction to the Theory of Programming Languages. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  6. 6.
    Kleppe, A.: Software Language Engineering. Pearson Education, London (2009)Google Scholar
  7. 7.
    The Eclipse Foundation: Eclipse Platform (2008),
  8. 8.
    Parr, T.: ANTLR — ANother Tool for Language Recognition — parser generator (October 2008),
  9. 9.
    TU Dresden: Software Technology Group: EMFText: Concrete Syntax Zoo (2008),
  10. 10.
    Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations, Principles, and Techniques. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Pittsburgh, PA (1990)Google Scholar
  12. 12.
    Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features to Models. In: Companion Proc.  of ICSE 2008. ACM, New York (2008)Google Scholar
  13. 13.
    The Eclipse Foundation: EMF-based implementation of UML2 metamodel (2008),
  14. 14.
    Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: Constructing Models with the Human-Usable Textual Notation. In: Proc. of the MoDELS 2008, Toulouse, France, pp. 249–263 (2008)Google Scholar
  15. 15.
    Goldschmidt, T., Becker, S., Uhl, A.: Classification of Concrete Textual Syntax Mapping Approaches. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 169–184. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Jouault, F., Bézivin, J., Kurtev, I.: TCS: A DSL for the Specification of Textual Concrete Syntaxes in Model Engineering. In: Proc.  of GPCE 2006. ACM, New York (2006)Google Scholar
  17. 17.
    Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R., Gérard, S., Jézéquel, J.M.: Model-Driven Analysis and Synthesis of Concrete Syntax. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 98–110. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Scheidgen, M.: Textual Modelling Framework,
  19. 19.
    Krahn, H., Rumpe, B., Völkel, S.: Efficient Editor Generation for Compositional DSLs in Eclipse. In: Proc. of DSM 2007, Montreal, Quebec, Canada, Technical Report TR-38, Jyväskylä University, Finland (2007)Google Scholar
  20. 20.
    Efftinge, S., Völter, M.: oAW xText: a framework for textual DSLs. In: Workshop on Modeling Symposium at Eclipse Summit (2006)Google Scholar
  21. 21.
    Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters for scannerless generalized lr parsers. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 143–158. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Aßmann, U.: Extending Grammars and Metamodels for Reuse: The Reuseware Approach. IET Software 2(3), 165–184 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Heidenreich
    • 1
  • Jendrik Johannes
    • 1
  • Sven Karol
    • 1
  • Mirko Seifert
    • 1
  • Christian Wende
    • 1
  1. 1.Institut für Software- und MultimediatechnikTechnische Universität DresdenDresdenGermany

Personalised recommendations