MCMAS: A Model Checker for the Verification of Multi-Agent Systems

  • Alessio Lomuscio
  • Hongyang Qu
  • Franco Raimondi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5643)


While temporal logic in its various forms has proven essential to reason about reactive systems, agent-based scenarios are typically specified by considering high-level agents attitudes. In particular, specification languages based on epistemic logic [7], or logics for knowledge, have proven useful in a variety of areas including robotics, security protocols, web-services, etc. For example, security specifications involving anonymity [4] are known to be naturally expressible in epistemic formalisms as they explicitly state the lack of different kinds of knowledge of the principals.


Model Check Graphical User Interface Temporal Logic Multiagent System Reachable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA: Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clarke, E., Lu, Y., Jha, S., Veith, H.: Tree-like counterexamples in model checking. In: the 17th IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  6. 6.
    Dembiński, P., Janowska, A., Janowski, P., Penczek, W., Pólrola, A., Szreter, M., Woźna, B., Zbrzezny, A.: VerICS: A tool for verifying Timed Automata and Estelle specifications. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 278–283. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  8. 8.
    Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical atl model checking knowledge, strategies, and games in multi-agent systems. In: Proceedings of AAMAS 2006, pp. 946–947. ACM Press, New York (2006)Google Scholar
  10. 10.
    Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., Szreter, M.: Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptographers protocol. Fundamenta Informaticae 63(2,3), 221–240 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS,
  13. 13.
    Lomuscio, A., Raimondi, F.: The complexity of model checking concurrent programs against CTLK specifications. In: Proceedings of the 5th international joint conference on Autonomous agents and multiagent systems (AAMAS 2006), pp. 548–550. ACM Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in multi-agent systems. In: Proceedings of AAMAS 2006, pp. 161–168. ACM Press, New York (2006)Google Scholar
  16. 16.
    Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75(1), 63–92 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via OBDDs. Journal of Applied Logic 5(2), 235–251 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Somenzi, F.: CUDD: CU decision diagram package - release 2.4.1 (2005),
  19. 19.
    Wooldridge, M.: Computationally grounded theories of agency. In: Proceedings of ICMAS, International Conference of Multi-Agent Systems, pp. 13–22. IEEE Press, Los Alamitos (2000)CrossRefGoogle Scholar
  20. 20.
    Wooldridge, M., Fisher, M., Huget, M., Parsons, S.: Model checking multiagent systems with MABLE. In: Proceedings of AAMAS 2002, pp. 952–959 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alessio Lomuscio
    • 1
  • Hongyang Qu
    • 1
  • Franco Raimondi
    • 2
  1. 1.Imperial College LondonUK
  2. 2.University College LondonUK

Personalised recommendations