Advertisement

Apron: A Library of Numerical Abstract Domains for Static Analysis

  • Bertrand Jeannet
  • Antoine Miné
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5643)

Abstract

This article describes Apron, a freely available library dedicated to the static analysis of the numerical variables of programs by abstract interpretation. Its goal is threefold: provide analysis implementers with ready-to-use numerical abstractions under a unified API, encourage the research in numerical abstract domains by providing a platform for integration and comparison, and provide teaching and demonstration tools to disseminate knowledge on abstract interpretation.

Keywords

Domain Designer Abstract Interpretation Abstract Domain Expression Tree Linear Congruence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    The APRON abstract domain library, http://apron.cri.ensmp.fr/library/
  2. 2.
    GMP: The GNU multiple precision arithmetic library, http://gmplib.org/
  3. 3.
    The MPFR library, http://www.mpfr.org/
  4. 4.
    Amjad, H., Bornat, R.: Towards automatic stability analysis for rely-guarantee proofs. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 14–28. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. SCP 72(1-2), 3–21 (2008)MathSciNetGoogle Scholar
  6. 6.
    Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    IEEE Computer Society. IEEE standard for binary floating-point arithmetic. Technical report, ANSI/IEEE Std. 745-1985 (1985)Google Scholar
  9. 9.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238–252. ACM Press, New York (1977)Google Scholar
  10. 10.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL 1978, pp. 84–97. ACM Press, New York (1978)Google Scholar
  11. 11.
    Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, S.: Numeric domains with summarized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 512–529. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Granger, P.: Static analysis of arithmetical congruences. Int. Journal of Computer Mathematics 30, 165–190 (1989)CrossRefzbMATHGoogle Scholar
  13. 13.
    Granger, P.: Static analysis of linear congruence equalities among variables of a program. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 169–192. Springer, Heidelberg (1991)Google Scholar
  14. 14.
  15. 15.
    Jeannet, B., et al.: The Interproc analyzer, http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
  16. 16.
    Jeannet, B., Serwe, W.: Abstracting call-stacks for interprocedural verification of imperative programs. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 258–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Karr, M.: Affine relationships among variables of a program. Acta Informatica, 133–151 (1976)Google Scholar
  18. 18.
    Majumdar, R., Gupta, A., Rybalchenko, A.: An efficient invariant generator. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Miné, A.: The octagon abstract domain. HOSC 19(1), 31–100 (2006)zbMATHGoogle Scholar
  21. 21.
    Simon, A., King, A., Howe, J.: Two variables per linear inequality as an abstract domain. In: Leuschel, M.A. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bertrand Jeannet
    • 1
  • Antoine Miné
    • 2
  1. 1.INRIA Rhône-AlpesGrenobleFrance
  2. 2.CNRS, École Normale SupérieureParisFrance

Personalised recommendations