Advertisement

INFAMY: An Infinite-State Markov Model Checker

  • Ernst Moritz Hahn
  • Holger Hermanns
  • Björn Wachter
  • Lijun Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5643)

Abstract

The design of complex concurrent systems often involves intricate performance and dependability considerations. Continuous-time Markov chains (CTMCs) are a widely used modeling formalism, where performance and dependability properties are analyzable by model checking. We present INFAMY, a model checker for arbitrarily structured infinite-state CTMCs. It checks probabilistic timing properties expressible in continuous stochastic logic (CSL). Conventional model checkers explore the given model exhaustively, which is often costly, due to state explosion, and impossible if the model is infinite. INFAMY only explores the model up to a finite depth, with the depth bound being computed on-the-fly. The computation of depth bounds is configurable to adapt to the characteristics of different classes of models.

Keywords

Model Check Depth Time Truncation Point Chemical Master Equation Statistical Model Checker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-Checking Continuous-Time Markov Chains. ACM Trans. Comput. Log 1, 162–170 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fox, B.L., Glynn, P.W.: Computing Poisson Probabilities. Commun. ACM 31, 440–445 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Grassmann, W.K.: Finding Transient Solutions in Markovian Event Systems Through Randomization. In: NSMC 1991, pp. 357–371 (1991)Google Scholar
  4. 4.
    van Moorsel, A.P.A., Sanders, W.H.: Adaptive Uniformization. Communications in Statistics - Stochastic Models 10, 619–647 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Munsky, B., Khammash, M.: The Finite State Projection Algorithm for the Solution of the Chemical Master Equation. Journal of Chemical Physics 124 (2006)Google Scholar
  6. 6.
    Zhang, L., Hermanns, H., Hahn, E.M., Wachter, B.: Time-Bounded Model Checking of Infinite-State Continuous-Time Markov Chains. In: ACSD, pp. 98–107 (2008)Google Scholar
  7. 7.
    Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Software Eng. 23, 279–295 (1997)CrossRefGoogle Scholar
  8. 8.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model checking meets performance evaluation. SIGMETRICS Performance Evaluation Review 32, 10–15 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for Automatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Zapreev, I.S.: Model Checking Markov Chains: Techniques and Tools. Ph.D thesis, University of Twente, Enschede, The Netherlands (2008)Google Scholar
  13. 13.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: Time-Bounded Model Checking of Infinite-State Continuous-Time Markov Chains. Technical Report No. 47, SFB/TR 14 AVACS (2009); To appear in Fundamenta InformaticaeGoogle Scholar
  14. 14.
    Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-Valued Abstraction for Continuous-Time Markov Chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Gross, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA 95, 6750–6755 (1998)CrossRefGoogle Scholar
  16. 16.
    Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the Use of Model Checking Techniques for Dependability Evaluation. In: SRDS, pp. 228–237 (2000)Google Scholar
  17. 17.
    Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision diagrams to represent and analyse continuous time Markov chains. In: Plateau, B., Stewart, W., Silva, M. (eds.) NSMC, pp. 188–207 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ernst Moritz Hahn
    • 1
  • Holger Hermanns
    • 1
  • Björn Wachter
    • 1
  • Lijun Zhang
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations