Advertisement

Games through Nested Fixpoints

  • Thomas Martin Gawlitza
  • Helmut Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5643)

Abstract

In this paper we consider two-player zero-sum payoff games on finite graphs, both in the deterministic as well as in the stochastic setting. In the deterministic setting, we consider total-payoff games which have been introduced as a refinement of mean-payoff games [10, 18]. In the stochastic setting, our class is a turn-based variant of liminf-payoff games [4, 15, 16]. In both settings, we provide a non-trivial characterization of the values through nested fixpoint equations. The characterization of the values of liminf-payoff games moreover shows that solving liminf-payoff games is polynomial-time reducible to solving stochastic parity games. We construct practical algorithms for solving the occurring nested fixpoint equations based on strategy iteration. As a corollary we obtain that solving deterministic total-payoff games and solving stochastic liminf-payoff games is in UP ∩ co− UP.

Keywords

Strategy Improvement Stochastic Game Hierarchical System Variable Assignment Optimality Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Björklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Applied Mathematics (2007)Google Scholar
  2. 2.
    Chatterjee, K., Henzinger, T.A.: Strategy improvement and randomized subexponential algorithms for stochastic parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 512–523. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chatterjee, K., Henzinger, T.A.: Reduction of stochastic parity to stochastic mean-payoff games. Inf. Process. Lett. 106(1), 1–7 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chatterjee, K., Henzinger, T.A.: Probabilistic systems with limsup and liminf objectives. ILC (to appear, 2009)Google Scholar
  5. 5.
    Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA, pp. 121–130 (2004)Google Scholar
  6. 6.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. IJGT 8, 109–113 (1979)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fischer, D., Grädel, E., Kaiser, L.: Model checking games for the quantitative μ-calculus. In: STACS, pp. 301–312 (2008)Google Scholar
  8. 8.
    Gawlitza, T., Seidl, H.: Computing game values for crash games. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 177–191. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Gillette, D.: Stochastic games with zero stop probabilities. In: Contributions to the Theory of Games III, vol. 39, pp. 179–187. Princeton University Press, Princeton (1957)Google Scholar
  10. 10.
    Gimbert, H., Zielonka, W.: When can you play positionally? In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gurvich, V., Karzanov, A., Khachiyan, L.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. U.S.S.R. Computational Mathematics and Mathematical Physics 28(5), 85–91 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gurvich, V., Miltersen, P.B.: On the computational complexity of solving stochastic mean-payoff games. CoRR, abs/0812.0486 (2008)Google Scholar
  13. 13.
    Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co −  UP. Inf. Process. Lett. 68(3), 119–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liggett, T.M., Lippman, S.A.: Stochastic games with perfict information and time average payoff. SIAM Review 11, 604–607 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Maitra, A., Sudderth, W.: An operator solution of stochastic games. Israel Journal of Mathematics 78, 33–49 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maitra, A., Sudderth, W.: Borel stochastic games with limsup payoff. Annals of Probability 21, 861–885 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pisaruk, N.: Mean cost cyclical games. Mathematics of Operations Research 24(4), 817–828 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Thuijsman, F., Vrieze, O.: Total reward stochastic games and sensitive average reward strategies. Journal of Optimazation Theory and Applications 98 (1998)Google Scholar
  19. 19.
    Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs. Theoretical Computer Science (TCS) 158(1,2), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Martin Gawlitza
    • 1
  • Helmut Seidl
    • 1
  1. 1.TU München, Institut für Informatik, I2MünchenGermany

Personalised recommendations