Improving Non-Progress Cycle Checks

  • David Faragó
  • Peter H. Schmitt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5578)

Abstract

This paper introduces a new model checking algorithm that searches for non-progress cycles, used mainly to check for livelocks. The algorithm performs an incremental depth-first search, i.e., it searches through the graph incrementally deeper. It simultaneously constructs the state space and searches for non-progress cycles. The algorithm is expected to be more efficient than the method the model checker SPIN currently uses, and finds shortest (w.r.t. progress) counterexamples. Its only downside is the need for a subsequent reachability depth-first search (which is not the bottleneck) for constructing a full counterexample. The new algorithm is better combinable with partial order reduction than SPIN’s method.

Keywords

Model Checking SPIN Non-progress cycles livelocks depth-first search partial order reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order techniques. International Journal on Software Tools for Technology Transfer (STTT) 2, 279–287 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999); third printing, 2001 editionGoogle Scholar
  3. 3.
    Dong, Y., Du, X., Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Sokolsky, O., Stark, E.W., Warren, D.S.: Fighting livelock in the i-protocol: a comparative study of verification tools. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 74–88. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Faragó, D.: Model checking of randomized leader election algorithms. Master’s thesis, Universität Karlsruhe (2007)Google Scholar
  5. 5.
    Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall Software Series (1992)Google Scholar
  6. 6.
    Holzmann, G.J.: The SPIN Model Checker: primer and reference manual, 1st edn. Addison Wesley, Reading (2004)Google Scholar
  7. 7.
    Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Proceedings of the Formal Description Techniques 1994, Bern, Switzerland, pp. 197–211. Chapman & Hall, Boca Raton (1994)Google Scholar
  8. 8.
    Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth-first search. In: Proceedings of the Second SPIN Workshop, Rutgers Univ., New Brunswick, NJ, August 1996, pp. 23–32. American Mathematical Society. DIMACS/32 (1996)Google Scholar
  9. 9.
    Islam, S.M.S., Sqalli, M.H., Khan, S.: Modeling and formal verification of DHCP using SPIN. IJCSA 3(2), 145–159 (2006)Google Scholar
  10. 10.
    Kamel, M., Leue, S.: Formalization and validation of the general inter-orb protocol (GIOP) using PROMELA and SPIN. In: Software Tools for Technology Transfer, pp. 394–409. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: 6th International Conference on Computer Aided Verification, Stanford, California (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Faragó
    • 1
  • Peter H. Schmitt
    • 1
  1. 1.Institut für Theoretische Informatik Logik und Formale MethodenUniversität Karlsruhe (TH)Germany

Personalised recommendations