Advertisement

Extrapolation-Based Path Invariants for Abstraction Refinement of Fifo Systems

  • Alexander Heußner
  • Tristan Le Gall
  • Grégoire Sutre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5578)

Abstract

The technique of counterexample-guided abstraction refinement (Cegar) has been successfully applied in the areas of software and hardware verification. Automatic abstraction refinement is also desirable for the safety verification of complex infinite-state models. This paper investigates Cegar in the context of formal models of network protocols, in our case, the verification of fifo systems. Our main contribution is the introduction of extrapolation-based path invariants for abstraction refinement. We develop a range of algorithms that are based on this novel theoretical notion, and which are parametrized by different extrapolation operators. These are utilized as subroutines in the refinement step of our Cegar semi-algorithm that is based on recognizable partition abstractions. We give sufficient conditions for the termination of Cegar by constraining the extrapolation operator. Our empirical evaluation confirms the benefit of extrapolation-based path invariants.

Keywords

Regular Language Nest Loop Safety Property Label Transition System Abstraction Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AJ96]
    Abdulla, P.A., Jonsson, B.: Verifying Programs with Unreliable Channels. Information and Computation 127(2), 91–101 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Ber79]
    Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)Google Scholar
  3. [BG99]
    Boigelot, B., Godefroid, P.: Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs. Formal Methods in System Design 14(3), 237–255 (1999)CrossRefGoogle Scholar
  4. [BGWW97]
    Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The Power of QDDs. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. [BH99]
    Bouajjani, A., Habermehl, P.: Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations. Theoretical Computer Science 221(1-2), 211–250 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BHV04]
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. [BR01]
    Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties of Interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. [BZ83]
    Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of the ACM 30(2), 323–342 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [CGJ+03]
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided Abstraction Refinement for Symbolic Model Checking. Journal of the ACM 50(5), 752–794 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [FIS03]
    Finkel, A., Iyer, S.P., Sutre, G.: Well-Abstracted Transition Systems: Application to FIFO Automata. Information and Computation 181(1), 1–31 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [GS97]
    Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. [HJMS02]
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc. Symposium on Principles of Programming Languages 2002, pp. 58–70. ACM Press, New York (2002)Google Scholar
  13. [JR86]
    Jard, C., Raynal, M.: De la Nécessité de Spécifier des Propriétés pour la Vérification des Algorithmes Distribués. Rapports de Recherche 590, IRISA Rennes (December 1986)Google Scholar
  14. [Las]
    Liège Automata-based Symbolic Handler (Lash). Tool Homepage, http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
  15. [LGJJ06]
    Le Gall, T., Jeannet, B., Jéron, T.: Verification of Communication Protocols using Abstract Interpretation of FIFO queues. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 204–219. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. [Mcs]
    Model Checker for Systems of Communicating Fifo Machines (McScM). Tool Homepage, http://www.labri.fr/~heussner/mcscm/
  17. [Scm]
    Tools and Libraries for Static Analysis and Verification. Tool Homepage, http://gforge.inria.fr/projects/bjeannet/
  18. [Tre]
    Tool for Reachability Analysis of CompleX Systems (Trex). Tool Homepage, http://www.liafa.jussieu.fr/~sighirea/trex/
  19. [YBCI08]
    Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic String Verification: An Automata-Based Approach. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexander Heußner
    • 1
  • Tristan Le Gall
    • 2
  • Grégoire Sutre
    • 1
  1. 1.LaBRI, Université Bordeaux, CNRSFrance
  2. 2.Université Libre de Bruxelles (ULB)Belgium

Personalised recommendations