Advertisement

Raman Imaging and Raman Mapping

  • Francis W.L. Esmonde-White
  • Michael D. Morris
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Raman spectroscopy can be used to non-destructively add image contrast in visualizing structures and dynamics in living systems and materials. Image contrast can be derived from any information contained in Raman spectra, including band intensities, positions and widths. Because these parameters are functions of the local physical and chemical environment of a constituent, the images can display these properties as well. This chapter discusses instrumentation for acquiring low definition Raman maps and high definitions Raman images in two and three dimensions. Experimental configurations and their advantages and drawbacks are described. Methods for enhancing resolution are discussed. Finally several examples these techniques are presented, with an emphasis on application areas not elsewhere discussed in the book.

Keywords

Raman Spectroscopy Point Spread Function Blind Deconvolution Global Illumination Raman Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Delhaye, P. Dhamelincourt, J. Raman Spectrosc. 3, 33 (1975)CrossRefADSGoogle Scholar
  2. [2]
    S. Schlucker et al., Anal. Chem. 75, 4312 (2003)CrossRefGoogle Scholar
  3. [3]
    K.A. Christensen, M.D. Morris, Appl. Spectrosc. 52, 1145 (1998)CrossRefADSGoogle Scholar
  4. [4]
    K. Golcuk et al., Biochim. Biophys. Acta – Biomembr. 1758, 868 (2006)CrossRefGoogle Scholar
  5. [5]
    S. Bernard, O. Beyssac, K. Benzerara, Appl. Spectrosc. 62, 1180 (2008)CrossRefADSGoogle Scholar
  6. [6]
    K. Golcuk et al., in Biomedical Vibrational Spectroscopy III: Advances in Research and Industry (SPIE, San Jose 2006), p. 609314Google Scholar
  7. [7]
    D.N. Batchelder, C. Cheng, G.D. Pitt, Adv. Mater. 3, 566 (1991)CrossRefGoogle Scholar
  8. [8]
    E.N. Lewis, P.J. Treado, I.W. Levin, Appl. Spectrosc. 47, 539 (1993)CrossRefADSGoogle Scholar
  9. [9]
    H.R. Morris, C.C. Hoyt, P.J. Treado, Appl. Spectrosc. 48, 857 (1994)CrossRefADSGoogle Scholar
  10. [10]
    J. Ma, D. Ben-Amotz, Appl. Spectrosc. 51, 1845 (1997)CrossRefADSGoogle Scholar
  11. [11]
    M.V. Schulmerich et al., Appl. Spectrosc. 60, 109 (2006)CrossRefADSGoogle Scholar
  12. [12]
    M.V. Schulmerich et al., in Advanced Biomedical and Clinical Diagnostic Systems V (SPIE, San Jose 2007), p. 643009Google Scholar
  13. [13]
    J.R. Swedlow, in Deconvolution of Images and Spectra, ed. by P.A. Jansson (Academic Press, San Diego, 1997), p. 284Google Scholar
  14. [14]
    A. Govil et al., Appl. Spectrosc. 45, 1604 (1991)CrossRefADSGoogle Scholar
  15. [15]
    A. Govil, D.M. Pallister, M.D. Morris, Appl. Spectrosc. 47, 75 (1993)CrossRefADSGoogle Scholar
  16. [16]
    N.J. Everall, Appl. Spectrosc. 54, 1515 (2000)CrossRefADSGoogle Scholar
  17. [17]
    L. Duponchel et al., Anal. Chim. Acta. 607, 168 (2008)CrossRefGoogle Scholar
  18. [18]
    C.L. Jahncke, H.D. Hallen, M.A. Paesler, J. Raman Spectrosc. 27, 579 (1996)CrossRefADSGoogle Scholar
  19. [19]
    C.L. Jahncke, M.A. Paesler, H.D. Hallen, Appl. Phys. Lett. 67, 2483 (1995)CrossRefADSGoogle Scholar
  20. [20]
    J. Kasim et al., Opt. Express 16, 7976 (2008)CrossRefADSGoogle Scholar
  21. [21]
    N. Anderson et al., Nano Lett. 6, 744 (2006)CrossRefADSGoogle Scholar
  22. [22]
    M. Becker et al., Small 4, 398 (2008)CrossRefGoogle Scholar
  23. [23]
    I. Chourpa et al., Chem. Soc. Rev. 37, 993 (2008)CrossRefGoogle Scholar
  24. [24]
    E. Bailo, V. Deckert, Chem. Soc. Rev. 37, 921 (2008)CrossRefGoogle Scholar
  25. [25]
    M.V. Schulmerich et al., J. Biomed. Opt. 13, 020506 (2008)CrossRefADSGoogle Scholar
  26. [26]
    S. Srinivasan et al., Opt. Express 16, 12190 (2008)CrossRefADSGoogle Scholar
  27. [27]
    P.J. Treado, M.D. Morris, Anal. Chem. 61, 723A (1989)CrossRefGoogle Scholar
  28. [28]
    D. Zhang et al., Appl. Spectrosc. 55, 61 (2001)CrossRefADSGoogle Scholar
  29. [29]
    K. Hamada et al., J. Biomed. Opt. 13, 044027 (2008)CrossRefADSGoogle Scholar
  30. [30]
    H.-J. van Manen, A. Lenferink, C. Otto, Anal. Chem. 80, 9576 (2008)CrossRefGoogle Scholar
  31. [31]
    C. Krafft et al., Analyst 133, 361 (2008)CrossRefADSGoogle Scholar
  32. [32]
    K.N. Yu et al., Bioconjug. Chem. 18, 1155 (2007)CrossRefGoogle Scholar
  33. [33]
    S. Keren et al., Proc. Natl. Acad. Sci. 105, 5844 (2008)CrossRefADSGoogle Scholar
  34. [34]
    C.A. Patil et al., Opt. Lett. 33, 1135 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Francis W.L. Esmonde-White
    • 1
  • Michael D. Morris
    • 1
  1. 1.Department of ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations