Visualization of Node Interaction Dynamics in Network Traces

  • Petar Dobrev
  • Sorin Stancu-Mara
  • Jürgen Schönwälder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5637)

Abstract

The analysis of network traces often requires to find the spots where something interesting happens. Since traces are usually very large data-sets, it is often not easy and time intensive to get an intuitive understanding of what happens within a given trace. Through the use of suitable data visualization techniques, it is possible for humans to identify noteworthy spots or characteristics of a trace much faster. Particularly interesting properties of a certain class of network traces are node interaction dynamics, that is how the traffic matrix between nodes evolves over time and the pattern of messages exchanged between nodes. This paper presents some tools visualizing node interaction dynamics that were developed to assist network trace analysts.

Keywords

Network measurement network visualization SNMP NetFlow 

References

  1. 1.
    Schönwälder, J.: SNMP Traffic Measurements and Trace Exchange Formats. RFC 5345, Jacobs University Bremen (October 2008)Google Scholar
  2. 2.
    van den Broek, J., Schönwälder, J., Pras, A., Harvan, M.: SNMP trace analysis definitions. In: Hausheer, D., Schönwälder, J. (eds.) AIMS 2008. LNCS, vol. 5127, pp. 134–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Schönwälder, J., Pras, A., Harvan, M., Schippers, J., van de Meent, R.: SNMP Traffic Analysis: Approaches, Tools, and First Results. In: Proc. 10th IFIP/IEEE International Symposium on Integrated Network Management (IM 2007), May 2007, pp. 323–332 (2007)Google Scholar
  4. 4.
    Case, J., Mundy, R., Partain, D., Stewart, B.: Introduction and Applicability Statements for Internet Standard Management Framework. RFC 3410, SNMP Research, Network Associates Laboratories, Ericsson (December 2002)Google Scholar
  5. 5.
    Salvador, E., Granville, L.: Using Visualization Techniques for SNMP Traffic Analyses. In: Proc. of the IEEE Symposium on Computers and Communications (ISCC 2008). IEEE, Los Alamitos (2008)Google Scholar
  6. 6.
    Schulze, M., Benko, G., Farrell, C.: Homebrew network monitoring: A prelude to network management. In: Proc. SANS II (March 1993)Google Scholar
  7. 7.
    Pleitner, S., Brown, D.: Geotraceman: A Visual Traceroute. In: Proc. Australian Unix User Group (AUUG 1995) (September 1995)Google Scholar
  8. 8.
    Huffaker, B., Plummer, D., Moore, D., Claffy, K.: Topology discovery by active probing. In: Proc. Symposium on Applications and the Internet (SAINT 2002), pp. 90–96. IEEE, Los Alamitos (2002)CrossRefGoogle Scholar
  9. 9.
    Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the autonomous systems level. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 365–376. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Munroe, R.: Map of the Internet. xkdc (2006)Google Scholar
  11. 11.
    Irwin, B., Pilkington, N.: High Level Internet Scale Traffic Visualization Using Hilbert Curve Mapping. In: Proc. of the Workshop on Visualization for Computer Security. Mathematics and Visualization. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Samak, T., Ghanem, S., Ismail, M.A.: On the Efficiency of using Space-Filling Curves in Network Traffic Representation. In: Proc. 11th IEEE Global Internet Symposium. IEEE, Los Alamitos (2008)Google Scholar
  13. 13.
    Lau, S.: The Spinning Cube of Potential Doom. Communications of the ACM 47(6), 25–26 (2004)CrossRefGoogle Scholar
  14. 14.
    Oberheide, J., Goff, M., Karir, M.: Flamingo: Visualizing Internet Traffic. In: Proc. 10th IEEE/IFIP Network Operations and Management Symposium (NOMS 2006), pp. 150–161. IEEE, Los Alamitos (2006)Google Scholar
  15. 15.
    Keim, D.A., Mansmann, F., Schneidewind, J., Schreck, T.: Monitoring Network Traffic with Radial Traffic Analyzer. In: Proc. IEEE Symposium on Visual Analytics Science and Technology (VAST). IEEE Computer Society, Los Alamitos (2006)Google Scholar
  16. 16.
    Mansmann, F., Vinnik, S.: Interactive Exploration of Data Traffic with Hierarchical Network Maps. IEEE Transactions on Visualization and Computer Graphics 12(6) (November 2006)Google Scholar
  17. 17.
    Mansmann, F., Fischer, F., Keim, D.A., North, S.C.: Visualizing large-scale IP traffic flows. In: Proc. 12th International Workshop Vision, Modeling, and Visualization (November 2007)Google Scholar
  18. 18.
    Phan, D., Gerth, J., Lee, M., Paepcke, A., Winograd, T.: Visual Analysis of Network Flow Data with Timelines and Event Plots. In: Proc. Workshop on Visualization for Computer Security (VizSec 2007). Mathematics and Visualization, pp. 85–99. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    van Rossum, G., Drake, F.: The Python Language Reference Manual. Network Theory Limited (2003)Google Scholar
  20. 20.
    Ousterhout, J.K.: Tcl and the Tk Toolkit. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  21. 21.
    O’Madadhain, J., Fisher, D., Smyth, P., White, S., Boey, Y.B.: Analysis and Visualization of Network Data using JUNG. Journal paper under preparationGoogle Scholar
  22. 22.
    Campione, M., Walrath, K.: The Java Tutorial: Object-Oriented Programming for the Internet, 2nd edn. Addison Wesley, Reading (1998)Google Scholar
  23. 23.
    Cisco Systems: NetFlow Services Solution Guide (January 2007)Google Scholar
  24. 24.
    Segal, M., Akeley, K.: The OpenGL Graphics System: A Specification. Version 3.1, The Khronos Group Inc. (March 2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Petar Dobrev
    • 1
  • Sorin Stancu-Mara
    • 1
  • Jürgen Schönwälder
    • 1
  1. 1.Computer ScienceJacobs University BremenGermany

Personalised recommendations