Jacobi Quartic Curves Revisited

  • Huseyin Hisil
  • Kenneth Koon-Ho Wong
  • Gary Carter
  • Ed Dawson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5594)

Abstract

This paper provides new results about efficient arithmetic on Jacobi quartic form elliptic curves, y2 = dx4 + 2 ax2 + 1. With recent bandwidth-efficient proposals, the arithmetic on Jacobi quartic curves became solidly faster than that of Weierstrass curves. These proposals use up to 7 coordinates to represent a single point. However, fast scalar multiplication algorithms based on windowing techniques, precompute and store several points which require more space than what it takes with 3 coordinates. Also note that some of these proposals require d = 1 for full speed. Unfortunately, elliptic curves having 2-times-a-prime number of points, cannot be written in Jacobi quartic form if d = 1. Even worse the contemporary formulae may fail to output correct coordinates for some inputs. This paper provides improved speeds using fewer coordinates without causing the above mentioned problems. For instance, our proposed point doubling algorithm takes only 2 multiplications, 5 squarings, and no multiplication with curve constants when d is arbitrary and a = ±1/2.

Keywords

Efficient elliptic curve arithmetic point multiplication Jacobi model of elliptic curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avanzi, R.M.: A note on the signed sliding window integer recoding and its left-to-right analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 130–143. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 34–42. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar multiplication. In: Finite Fields and Applications Fq8. Contemporary Mathematics, American Mathematical Society, vol. 461, pp. 1–18 (2008)Google Scholar
  4. 4.
    Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic systems (2008), http://bench.cr.yp.to
  5. 5.
    Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.hyperelliptic.org/EFD
  6. 6.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics 7(4), 385–434 (1986)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)Google Scholar
  11. 11.
    Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi model. Information Processing Letters 104(3), 101–105 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and improved Weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 343–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Euler, L.: De integratione aequationis differentialis \(m \, dx/\sqrt{1-x^4} = n \, dy/\sqrt{1-y^4}\). Novi Commentarii Academiae Scientiarum Petropolitanae 6, 37–57 (1761); Translated from the Latin by Langton, S.G. On the integration of the differential equation \(m \, dx/\sqrt{1-x^4} = n \, dy/\sqrt{1-y^4}\), http://home.sandiego.edu/~langton/eell.pdf
  14. 14.
    Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key exchanges. In: SPEED 2007, pp.49–64 (2007), http://www.loria.fr/~gaudry/publis/mpfq.pdf
  16. 16.
    Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptography. Springer, New York (2003)MATHGoogle Scholar
  17. 17.
    Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve arithmetic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 138–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Hisil, H., Wong, K.K., Carter, G., Dawson, E.: Faster group operations on elliptic curves. In: Australasian Information Security Conference (AISC 2009), Wellington, New Zealand (January 2009); Conferences in Research and Practice in Information Technology (CRPIT), vol. 98, pp. 7–19 (2009)Google Scholar
  19. 19.
    Hisil, H., Wong, K.K., Carter, G., Dawson, E.: Twisted Edwards curves revisited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Jacobi, C.G.J.: Fundamenta nova theoriae functionum ellipticarum. Sumtibus Fratrum Borntræger (1829)Google Scholar
  21. 21.
    Longa, P., Gebotys, C.: Novel precomputation schemes for elliptic curve cryptosystems. In: ACNS 2009. LNCS. Springer, Heidelberg (to appear, 2009)Google Scholar
  22. 22.
    Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Monagan, M., Pearce, R.: Rational simplification modulo a polynomial ideal. In: ISSAC 2006, pp. 239–245. ACM, New York (2006)Google Scholar
  24. 24.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Huseyin Hisil
    • 1
  • Kenneth Koon-Ho Wong
    • 1
  • Gary Carter
    • 1
  • Ed Dawson
    • 1
  1. 1.Information Security InstituteQueensland University of TechnologyAustralia

Personalised recommendations