Finite Groups Representation Theory with Coq

  • Sidi Ould Biha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5625)

Abstract

Representation theory is a branch of algebra that allows the study of groups through linear applications, i.e. matrices. Thus problems in abstract groups can be reduced to problems on matrices. Representation theory is the basis of character theory. In this paper we present a formalization of finite groups representation theory in the Coq system that includes a formalization of Maschke’s theorem on reducible finite group algebra.

Keywords

Representation theory Maschke’s theorem linear algebra Coq SSReflect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonthier, G.: Formal proof - The Four-Color Theorem. Notices of the American Mathematical Society 55(11) (2008)Google Scholar
  2. 2.
    Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem. CoRR abs/cs/0509025 (2005)Google Scholar
  3. 3.
  4. 4.
    The C-CoRN project, http://c-corn.cs.ru.nl/
  5. 5.
    Stephen, W.: The Mathematica Book, 5th edn. Wolfram Media (2003)Google Scholar
  6. 6.
    The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.12 (2008)Google Scholar
  7. 7.
  8. 8.
    Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific Journal of Mathematics 13(3), 775–1029 (1963)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. INRIA Technical report, http://hal.inria.fr/inria-00258384
  10. 10.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Coq development team: The Coq Proof Assistant Reference Manual, version 8.2 (2009)Google Scholar
  12. 12.
    Gelbart, S.: An Elementary Introduction to the Langlands Program. Bulletin of the American Mathematical Society 10(2) (1984)Google Scholar
  13. 13.
    Isaacs, I.M.: Character Theory of Finite Groups. American Mathematical Society (1994)Google Scholar
  14. 14.
    James, G., Liebeck, M.: Representations and Characters of Groups. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Webb, P.: Finite Group Representations for the Pure Mathematician. The manuscript of the book is available on the author web page, http://www.math.umn.edu/~webb/RepBook/index.html
  16. 16.
    Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Pollack, R.: Dependently Typed Records for Representing Mathematical Structure. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 462–479. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. Journal of Symbolic Computation 34(4), 271–286 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pottier, L.: User contributions in Coq, Algebra (1999), http://coq.inria.fr/contribs/Algebra.html
  21. 21.
    Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13(2), 261–293 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mizar Mathematical Library, http://mizar.org/library/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sidi Ould Biha
    • 1
  1. 1.INRIA Sophia Antipolis, INRIA Microsoft Research Joint CentreFrance

Personalised recommendations